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1
INSTRUCTION AND LOGIC FOR ADAPTIVE
DATASET PRIORITIES IN PROCESSOR
CACHES

FIELD OF THE INVENTION

The present disclosure pertains to the field of processing
logic, microprocessors, and associated instruction set archi-
tecture that, when executed by the processor or other process-
ing logic, perform logical, mathematical, or other functional
operations.

DESCRIPTION OF RELATED ART

Multiprocessor systems are becoming more and more
common. Applications of multiprocessor systems include
dynamic domain partitioning all the way down to desktop
computing. In order to take advantage of multiprocessor sys-
tems, code to be executed may be separated into multiple
threads for execution by various processing entities. Each
thread may be executed in parallel with one another. Further-
more, in order to increase the utility of a processing entity,
out-of-order execution may be employed. Out-of-order
execution may execute instructions as input to such instruc-
tions is made available. Thus, an instruction that appears later
in a code sequence may be executed before an instruction
appearing earlier in a code sequence.

DESCRIPTION OF THE FIGURES

Embodiments are illustrated by way of example and not
limitation in the Figures of the accompanying drawings:

FIG. 1A is a block diagram of an exemplary computer
system formed with a processor that may include execution
units to execute an instruction, in accordance with embodi-
ments of the present disclosure;

FIG. 1B illustrates a data processing system, in accordance
with embodiments of the present disclosure;

FIG. 1Cillustrates other embodiments of a data processing
system for performing single instruction multiple data opera-
tions;

FIG. 2 is a block diagram of the micro-architecture for a
processor that may include logic circuits to perform instruc-
tions, in accordance with embodiments of the present disclo-
sure;

FIG. 3A illustrates various packed data type representa-
tions in multimedia registers, in accordance with embodi-
ments of the present disclosure;

FIG. 3B illustrates possible in-register data storage for-
mats, in accordance with embodiments of the present disclo-
sure;

FIG. 3C illustrates various signed and unsigned packed
data type representations in multimedia registers, in accor-
dance with embodiments of the present disclosure;

FIG. 3D illustrates an embodiment of an operation encod-
ing format;

FIG. 3E illustrates another possible operation encoding
format having forty or more bits, in accordance with embodi-
ments of the present disclosure;

FIG. 3F illustrates yet another possible operation encoding
format, in accordance with embodiments of the present dis-
closure;

FIG. 4A is ablock diagram illustrating an in-order pipeline
and a register renaming stage, out-of-order issue/execution
pipeline, in accordance with embodiments of the present dis-
closure;
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FIG. 4B is a block diagram illustrating an in-order archi-
tecture core and a register renaming logic, out-of-order issue/
execution logic to be included in a processor, in accordance
with embodiments of the present disclosure;

FIG. 5A is a block diagram of a processor, in accordance
with embodiments of the present disclosure;

FIG. 5B is a block diagram of an example implementation
of a core, in accordance with embodiments of the present
disclosure;

FIG. 6 is a block diagram of a system, in accordance with
embodiments of the present disclosure;

FIG. 7is ablock diagram ofa second system, in accordance
with embodiments of the present disclosure;

FIG. 8 is a block diagram of a third system in accordance
with embodiments of the present disclosure;

FIG. 9 is a block diagram of a system-on-a-chip, in accor-
dance with embodiments of the present disclosure;

FIG. 10 illustrates a processor containing a central process-
ing unit and a graphics processing unit which may perform at
least one instruction, in accordance with embodiments of the
present disclosure;

FIG. 11 is a block diagram illustrating the development of
IP cores, in accordance with embodiments of the present
disclosure;

FIG. 12 illustrates how an instruction of a first type may be
emulated by a processor of a different type, in accordance
with embodiments of the present disclosure;

FIG. 13 illustrates a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set, in accordance with embodiments of the
present disclosure;

FIG. 14 is ablock diagram of an architecture of a processor,
in accordance with embodiments of the present disclosure;

FIG. 15 is a more detailed block diagram of an architecture
of a processor, in accordance with embodiments of the
present disclosure;

FIG. 16 is a block diagram of an execution pipeline for an
architecture of a processor, in accordance with embodiments
of the present disclosure;

FIG. 17 is a block diagram of an electronic device for
utilizing a processor, in accordance with embodiments of the
present disclosure;

FIG. 18 is a block diagram of a system for implementing an
instruction and logic for adaptive dataset priorities, in accor-
dance with embodiments of the present disclosure;

FIG. 19 is an illustration of operation of system to perform
evaluation and adaptation of priority datasets during a cache
miss, in accordance with embodiments of the present disclo-
sure;

FIG. 20 is an illustration of operation of system to specify
dataset priorities, according to embodiments of the present
disclosure;

FIG. 21 illustrates example operation of system to perform
and adapt cache eviction, according to embodiments of the
present disclosure;

FIG. 22 illustrates further example operation of system to
perform and adapt cache eviction, according to embodiments
of the present disclosure;

FIG. 23 is an illustration of operation of software to per-
form corrective action when notified by hardware that too
many high-priority addresses have been evicted from cache,
according to embodiments of the present disclosure; and

FIG. 24 is a flowchart of an example embodiment of a
method for executing adaptive dataset priorities, in accor-
dance with embodiments of the present disclosure.
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DETAILED DESCRIPTION

The following description describes an instruction and pro-
cessing logic for adaptive data set priorities with a processor,
virtual processor, package, computer system, or other pro-
cessing apparatus. Such adaptive dataset priorities may be
used to evaluate contents of caches of such a processor. In the
following description, numerous specific details such as pro-
cessing logic, processor types, micro-architectural condi-
tions, events, enablement mechanisms, and the like are set
forth in order to provide a more thorough understanding of
embodiments of the present disclosure. It will be appreciated,
however, by one skilled in the art that the embodiments may
be practiced without such specific details. Additionally, some
well-known structures, circuits, and the like have not been
shown in detail to avoid unnecessarily obscuring embodi-
ments of the present disclosure.

Although the following embodiments are described with
reference to a processor, other embodiments are applicable to
other types of integrated circuits and logic devices. Similar
techniques and teachings of embodiments of the present dis-
closure may be applied to other types of circuits or semicon-
ductor devices that may benefit from higher pipeline through-
put and improved performance. The teachings of
embodiments of the present disclosure are applicable to any
processor or machine that performs data manipulations.
However, the embodiments are not limited to processors or
machines that perform 512-bit, 256-bit, 128-bit, 64-bit,
32-bit, or 16-bit data operations and may be applied to any
processor and machine in which manipulation or manage-
ment of data may be performed. In addition, the following
description provides examples, and the accompanying draw-
ings show various examples for the purposes of illustration.
However, these examples should not be construed in a limit-
ing sense as they are merely intended to provide examples of
embodiments of the present disclosure rather than to provide
an exhaustive list of all possible implementations of embodi-
ments of the present disclosure.

Although the below examples describe instruction han-
dling and distribution in the context of execution units and
logic circuits, other embodiments of the present disclosure
may be accomplished by way of a data or instructions stored
on a machine-readable, tangible medium, which when per-
formed by a machine cause the machine to perform functions
consistent with at least one embodiment of the disclosure. In
one embodiment, functions associated with embodiments of
the present disclosure are embodied in machine-executable
instructions. The instructions may be used to cause a general-
purpose or special-purpose processor that may be pro-
grammed with the instructions to perform the steps of the
present disclosure. Embodiments of the present disclosure
may be provided as a computer program product or software
which may include a machine or computer-readable medium
having stored thereon instructions which may be used to
program a computer (or other electronic devices) to perform
one or more operations according to embodiments of the
present disclosure. Furthermore, steps of embodiments of the
present disclosure might be performed by specific hardware
components that contain fixed-function logic for performing
the steps, or by any combination of programmed computer
components and fixed-function hardware components.

Instructions used to program logic to perform embodi-
ments of the present disclosure may be stored within a
memory in the system, such as DRAM, cache, flash memory,
or other storage. Furthermore, the instructions may be dis-
tributed via a network or by way of other computer-readable
media. Thus a machine-readable medium may include any
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mechanism for storing or transmitting information in a form
readable by a machine (e.g., a computer), but is not limited to,
floppy diskettes, optical disks, Compact Disc, Read-Only
Memory (CD-ROMs), and magneto-optical disks, Read-
Only Memory (ROMs), Random Access Memory (RAM),
Erasable Programmable Read-Only Memory (EPROM),
Electrically Erasable Programmable Read-Only Memory
(EEPROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier waves,
infrared signals, digital signals, etc.). Accordingly, the com-
puter-readable medium may include any type of tangible
machine-readable medium suitable for storing or transmitting
electronic instructions or information in a form readable by a
machine (e.g., a computer).

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as may be
useful in simulations, the hardware may be represented using
a hardware description language or another functional
description language. Additionally, a circuit level model with
logic and/or transistor gates may be produced at some stages
of the design process. Furthermore, designs, at some stage,
may reach a level of data representing the physical placement
of various devices in the hardware model. In cases wherein
some semiconductor fabrication techniques are used, the data
representing the hardware model may be the data specitying
the presence or absence of various features on different mask
layers for masks used to produce the integrated circuit. In any
representation of the design, the data may be stored in any
form of a machine-readable medium. A memory or a mag-
netic or optical storage such as a disc may be the machine-
readable medium to store information transmitted via optical
or electrical wave modulated or otherwise generated to trans-
mit such information. When an electrical carrier wave indi-
cating or carrying the code or design is transmitted, to the
extent that copying, buffering, or retransmission of the elec-
trical signal is performed, a new copy may be made. Thus, a
communication provider or a network provider may store on
atangible, machine-readable medium, at least temporarily, an
article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present disclo-
sure.

In modern processors, a number of different execution
units may be used to process and execute a variety of code and
instructions. Some instructions may be quicker to complete
while others may take a number of clock cycles to complete.
The faster the throughput of instructions, the better the overall
performance of the processor. Thus it would be advantageous
to have as many instructions execute as fast as possible.
However, there may be certain instructions that have greater
complexity and require more in terms of execution time and
processor resources, such as floating point instructions, load/
store operations, data moves, etc.

As more computer systems are used in internet, text, and
multimedia applications, additional processor support has
been introduced over time. In one embodiment, an instruction
set may be associated with one or more computer architec-
tures, including data types, instructions, register architecture,
addressing modes, memory architecture, interrupt and excep-
tion handling, and external input and output (I/O).

In one embodiment, the instruction set architecture (ISA)
may be implemented by one or more micro-architectures,
which may include processor logic and circuits used to imple-
ment one or more instruction sets. Accordingly, processors
with different micro-architectures may share at least a portion
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of'a common instruction set. For example, Intel® Pentium 4
processors, Intel® Core™ processors, and processors from
Advanced Micro Devices, Inc. of Sunnyvale Calif. imple-
ment nearly identical versions of the x86 instruction set (with
some extensions that have been added with newer versions),
but have different internal designs. Similarly, processors
designed by other processor development companies, such as
ARM Holdings, Ltd., MIPS, or their licensees or adopters,
may share at least a portion acommon instruction set, but may
include different processor designs. For example, the same
register architecture of the ISA may be implemented in dif-
ferent ways in different micro-architectures using new or
well-known techniques, including dedicated physical regis-
ters, one or more dynamically allocated physical registers
using a register renaming mechanism (e.g., the use of a Reg-
ister Alias Table (RAT), a Reorder Bufter (ROB) and a retire-
ment register file. In one embodiment, registers may include
one or more registers, register architectures, register files, or
other register sets that may or may not be addressable by a
software programmer.

An instruction may include one or more instruction for-
mats. In one embodiment, an instruction format may indicate
various fields (number of bits, location of bits, etc.) to specify,
among other things, the operation to be performed and the
operands on which that operation will be performed. In a
further embodiment, some instruction formats may be further
defined by instruction templates (or sub-formats). For
example, the instruction templates of a given instruction for-
mat may be defined to have different subsets of the instruction
format’s fields and/or defined to have a given field interpreted
differently. In one embodiment, an instruction may be
expressed using an instruction format (and, if defined, in a
given one of the instruction templates of that instruction for-
mat) and specifies or indicates the operation and the operands
upon which the operation will operate.

Scientific, financial, auto-vectorized general purpose,
RMS (recognition, mining, and synthesis), and visual and
multimedia applications (e.g., 2D/3D graphics, image pro-
cessing, video compression/decompression, voice recogni-
tion algorithms and audio manipulation) may require the
same operation to be performed on a large number of data
items. In one embodiment, Single Instruction Multiple Data
(SIMD) refers to a type of instruction that causes a processor
to perform an operation on multiple data elements. SIMD
technology may be used in processors that may logically
divide the bits in a register into a number of fixed-sized or
variable-sized data elements, each of which represents a sepa-
rate value. For example, in one embodiment, the bits in a
64-bit register may be organized as a source operand contain-
ing four separate 16-bit data elements, each of which repre-
sents a separate 16-bit value. This type of data may be referred
to as ‘packed’ data type or ‘vector’ data type, and operands of
this data type may be referred to as packed data operands or
vector operands. In one embodiment, a packed data item or
vector may be a sequence of packed data elements stored
within a single register, and a packed data operand or a vector
operand may a source or destination operand of a SIMD
instruction (or ‘packed data instruction’ or a ‘vector instruc-
tion’). In one embodiment, a SIMD instruction specifies a
single vector operation to be performed on two source vector
operands to generate a destination vector operand (also
referred to as a result vector operand) of the same or different
size, with the same or different number of data elements, and
in the same or different data element order.

SIMD technology, such as that employed by the Intel®
Core™ processors having an instruction set including x86,
MMX™, Streaming SIMD Extensions (SSE), SSE2, SSE3,
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SSE4.1, and SSE4.2 instructions, ARM processors, such as
the ARM Cortex® family of processors having an instruction
set including the Vector Floating Point (VFP) and/or NEON
instructions, and MIPS processors, such as the Loongson
family of processors developed by the Institute of Computing
Technology (ICT) of the Chinese Academy of Sciences, has
enabled a significant improvement in application perfor-
mance (Core™ and MMX™ are registered trademarks or
trademarks of Intel Corporation of Santa Clara, Calif.).

In one embodiment, destination and source registers/data
may be generic terms to represent the source and destination
of the corresponding data or operation. In some embodi-
ments, they may be implemented by registers, memory, or
other storage areas having other names or functions than
those depicted. For example, in one embodiment, “DEST1”
may be a temporary storage register or other storage area,
whereas “SRC1” and “SRC2” may be a first and second
source storage register or other storage area, and so forth. In
other embodiments, two or more of the SRC and DEST
storage areas may correspond to different data storage ele-
ments within the same storage area (e.g., a SIMD register). In
one embodiment, one of the source registers may also act as
a destination register by, for example, writing back the result
of'an operation performed on the first and second source data
to one of the two source registers serving as a destination
registers.

FIG. 1A is a block diagram of an exemplary computer
system formed with a processor that may include execution
units to execute an instruction, in accordance with embodi-
ments of the present disclosure. System 100 may include a
component, such as a processor 102 to employ execution
units including logic to perform algorithms for process data,
in accordance with the present disclosure, such as in the
embodiment described herein. System 100 may be represen-
tative of processing systems based on the PENTIUM® 11,
PENTIUM® 4, Xeon™, Itanium®, XScale™ and/or Stron-
gARM™ microprocessors available from Intel Corporation
of Santa Clara, Calif., although other systems (including PCs
having other microprocessors, engineering workstations, set-
top boxes and the like) may also be used. In one embodiment,
sample system 100 may execute a version of the WIN-
DOWS™ operating system available from Microsoft Corpo-
ration of Redmond, Wash., although other operating systems
(UNIX and Linux for example), embedded software, and/or
graphical user interfaces, may also be used. Thus, embodi-
ments of the present disclosure are not limited to any specific
combination of hardware circuitry and software.

Embodiments are not limited to computer systems.
Embodiments of the present disclosure may be used in other
devices such as handheld devices and embedded applications.
Some examples of handheld devices include cellular phones,
Internet Protocol devices, digital cameras, personal digital
assistants (PDAs), and handheld PCs. Embedded applica-
tions may include a micro controller, a digital signal proces-
sor (DSP), system on a chip, network computers (NetPC),
set-top boxes, network hubs, wide area network (WAN)
switches, or any other system that may perform one or more
instructions in accordance with at least one embodiment.

Computer system 100 may include a processor 102 that
may include one or more execution units 108 to perform an
algorithm to perform at least one instruction in accordance
with one embodiment of the present disclosure. One embodi-
ment may be described in the context of a single processor
desktop or server system, but other embodiments may be
included in a multiprocessor system. System 100 may be an
example of a ‘hub’ system architecture. System 100 may
include a processor 102 for processing data signals. Processor



US 9,405,706 B2

7

102 may include a complex instruction set computer (CISC)
microprocessor, a reduced instruction set computing (RISC)
microprocessor, a very long instruction word (VLIW) micro-
processor, a processor implementing a combination of
instruction sets, or any other processor device, such as a
digital signal processor, for example. In one embodiment,
processor 102 may be coupled to a processor bus 110 that may
transmit data signals between processor 102 and other com-
ponents in system 100. The elements of system 100 may
perform conventional functions that are well known to those
familiar with the art.

In one embodiment, processor 102 may include a Level 1
(L1) internal cache memory 104. Depending on the architec-
ture, the processor 102 may have a single internal cache or
multiple levels of internal cache. In another embodiment, the
cache memory may reside external to processor 102. Other
embodiments may also include a combination of both internal
and external caches depending on the particular implementa-
tion and needs. Register file 106 may store different types of
data in various registers including integer registers, floating
point registers, status registers, and instruction pointer regis-
ter.

Execution unit 108, including logic to perform integer and
floating point operations, also resides in processor 102. Pro-
cessor 102 may also include a microcode (ucode) ROM that
stores microcode for certain macroinstructions. In one
embodiment, execution unit 108 may include logic to handle
apacked instruction set 109. By including the packed instruc-
tion set 109 in the instruction set of a general-purpose pro-
cessor 102, along with associated circuitry to execute the
instructions, the operations used by many multimedia appli-
cations may be performed using packed data in a general-
purpose processor 102. Thus, many multimedia applications
may be accelerated and executed more efficiently by using the
full width of a processor’s data bus for performing operations
on packed data. This may eliminate the need to transfer
smaller units of data across the processor’s data bus to per-
form one or more operations one data element at a time.

Embodiments of an execution unit 108 may also be used in
micro controllers, embedded processors, graphics devices,
DSPs, and other types of logic circuits. System 100 may
include a memory 120. Memory 120 may be implemented as
a dynamic random access memory (DRAM) device, a static
random access memory (SRAM) device, flash memory
device, or other memory device. Memory 120 may store
instructions and/or data represented by data signals that may
be executed by processor 102.

A system logic chip 116 may be coupled to processor bus
110 and memory 120. System logic chip 116 may include a
memory controller hub (MCH). Processor 102 may commu-
nicate with MCH 116 via a processor bus 110. MCH 116 may
provide a high bandwidth memory path 118 to memory 120
for instruction and data storage and for storage of graphics
commands, data and textures. MCH 116 may direct data
signals between processor 102, memory 120, and other com-
ponents in system 100 and to bridge the data signals between
processor bus 110, memory 120, and system 1/0 122. In some
embodiments, the system logic chip 116 may provide a
graphics port for coupling to a graphics controller 112. MCH
116 may be coupled to memory 120 through a memory inter-
face 118. Graphics card 112 may be coupled to MCH 116
through an Accelerated Graphics Port (AGP) interconnect
114.

System 100 may use a proprietary hub interface bus 122 to
couple MCH 116 to 1/O controller hub (ICH) 130. In one
embodiment, ICH 130 may provide direct connections to
some [/O devices via a local /O bus. The local I/O bus may
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include a high-speed 1/O bus for connecting peripherals to
memory 120, chipset, and processor 102. Examples may
include the audio controller, firmware hub (flash BIOS) 128,
wireless transceiver 126, data storage 124, legacy 1/O con-
troller containing user input and keyboard interfaces, a serial
expansion port such as Universal Serial Bus (USB), and a
network controller 134. Data storage device 124 may com-
prise a hard disk drive, a floppy disk drive, a CD-ROM device,
a flash memory device, or other mass storage device.

For another embodiment of a system, an instruction in
accordance with one embodiment may be used with a system
on a chip. One embodiment of a system on a chip comprises
of a processor and a memory. The memory for one such
system may include a flash memory. The flash memory may
be located on the same die as the processor and other system
components. Additionally, other logic blocks such as a
memory controller or graphics controller may also be located
on a system on a chip.

FIG. 1B illustrates a data processing system 140 which
implements the principles of embodiments of the present
disclosure. It will be readily appreciated by one of skill in the
art that the embodiments described herein may operate with
alternative processing systems without departure from the
scope of embodiments of the disclosure.

Computer system 140 comprises a processing core 159 for
performing at least one instruction in accordance with one
embodiment. In one embodiment, processing core 159 rep-
resents a processing unit of any type of architecture, including
but not limited to a CISC, a RISC or a VLIW type architec-
ture. Processing core 159 may also be suitable for manufac-
ture in one or more process technologies and by being repre-
sented on a machine-readable media in sufficient detail, may
be suitable to facilitate said manufacture.

Processing core 159 comprises an execution unit 142, a set
of register files 145, and a decoder 144. Processing core 159
may also include additional circuitry (not shown) which may
be unnecessary to the understanding of embodiments of the
present disclosure. Execution unit 142 may execute instruc-
tions received by processing core 159. In addition to perform-
ing typical processor instructions, execution unit 142 may
perform instructions in packed instruction set 143 for per-
forming operations on packed data formats. Packed instruc-
tion set 143 may include instructions for performing embodi-
ments of the disclosure and other packed instructions.
Execution unit 142 may be coupled to register file 145 by an
internal bus. Register file 145 may represent a storage area on
processing core 159 for storing information, including data.
As previously mentioned, it is understood that the storage
area may store the packed data might not be critical. Execu-
tion unit 142 may be coupled to decoder 144. Decoder 144
may decode instructions received by processing core 159 into
control signals and/or microcode entry points. In response to
these control signals and/or microcode entry points, execu-
tion unit 142 performs the appropriate operations. In one
embodiment, the decoder may interpret the opcode of the
instruction, which will indicate what operation should be
performed on the corresponding data indicated within the
instruction.

Processing core 159 may be coupled with bus 141 for
communicating with various other system devices, which
may include but are not limited to, for example, synchronous
dynamic random access memory (SDRAM) control 146,
static random access memory (SRAM) control 147, burst
flash memory interface 148, personal computer memory card
international association (PCMCIA)/compact flash (CF) card
control 149, liquid crystal display (LCD) control 150, direct
memory access (DMA) controller 151, and alternative bus
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master interface 152. In one embodiment, data processing
system 140 may also comprise an I/O bridge 154 for commu-
nicating with various /O devices via an /O bus 153. Such I/O
devices may include but are not limited to, for example,
universal asynchronous receiver/transmitter (UART) 155,
universal serial bus (USB) 156, Bluetooth wireless UART
157 and I/O expansion interface 158.

One embodiment of data processing system 140 provides
for mobile, network and/or wireless communications and a
processing core 159 that may perform SIMD operations
including a text string comparison operation. Processing core
159 may be programmed with various audio, video, imaging
and communications algorithms including discrete transfor-
mations such as a Walsh-Hadamard transform, a fast Fourier
transform (FFT), a discrete cosine transform (DCT), and their
respective inverse transforms; compression/decompression
techniques such as color space transformation, video encode
motion estimation or video decode motion compensation;
and modulation/demodulation (MODEM) functions such as
pulse coded modulation (PCM).

FIG. 1Cillustrates other embodiments of a data processing
system that performs SIMD operations. In one embodiment,
data processing system 160 may include a main processor
166, a SIMD coprocessor 161, a cache memory 167, and an
input/output system 168. Input/output system 168 may
optionally be coupled to a wireless interface 169. SIMD
coprocessor 161 may perform operations including instruc-
tions in accordance with one embodiment. In one embodi-
ment, processing core 170 may be suitable for manufacture in
one or more process technologies and by being represented
on a machine-readable media in sufficient detail, may be
suitable to facilitate the manufacture of all or part of data
processing system 160 including processing core 170.

In one embodiment, SIMD coprocessor 161 comprises an
execution unit 162 and a set of register files 164. One embodi-
ment of main processor 165 comprises a decoder 165 to
recognize instructions of instruction set 163 including
instructions in accordance with one embodiment for execu-
tion by execution unit 162. In other embodiments, SIMD
coprocessor 161 also comprises at least part of decoder 165 to
decode instructions of instruction set 163. Processing core
170 may also include additional circuitry (not shown) which
may be unnecessary to the understanding of embodiments of
the present disclosure.

In operation, main processor 166 executes a stream of data
processing instructions that control data processing opera-
tions of a general type including interactions with cache
memory 167, and input/output system 168. Embedded within
the stream of data processing instructions may be SIMD
coprocessor instructions. Decoder 165 of main processor 166
recognizes these SIMD coprocessor instructions as being ofa
type that should be executed by an attached SIMD coproces-
sor 161. Accordingly, main processor 166 issues these SIMD
coprocessor instructions (or control signals representing
SIMD coprocessor instructions) on the coprocessor bus 166.
From coprocessor bus 166, these instructions may be received
by any attached SIMD coprocessors. In this case, SIMD
coprocessor 161 may accept and execute any received SIMD
coprocessor instructions intended for it.

Data may be received via wireless interface 169 for pro-
cessing by the SIMD coprocessor instructions. For one
example, voice communication may be received in the form
of a digital signal, which may be processed by the SIMD
coprocessor instructions to regenerate digital audio samples
representative of the voice communications. For another
example, compressed audio and/or video may be received in
the form of a digital bit stream, which may be processed by
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the SIMD coprocessor instructions to regenerate digital audio
samples and/or motion video frames. In one embodiment of
processing core 170, main processor 166, and a SIMD copro-
cessor 161 may be integrated into a single processing core
170 comprising an execution unit 162, a set of register files
164, and a decoder 165 to recognize instructions of instruc-
tion set 163 including instructions in accordance with one
embodiment.

FIG. 2 is a block diagram of the micro-architecture for a
processor 200 that may include logic circuits to perform
instructions, in accordance with embodiments of the present
disclosure. In some embodiments, an instruction in accor-
dance with one embodiment may be implemented to operate
on data elements having sizes of byte, word, doubleword,
quadword, etc., as well as datatypes, such as single and
double precision integer and floating point datatypes. In one
embodiment, in-order front end 201 may implement a part of
processor 200 that may fetch instructions to be executed and
prepares the instructions to be used later in the processor
pipeline. Front end 201 may include several units. In one
embodiment, instruction prefetcher 226 fetches instructions
from memory and feeds the instructions to an instruction
decoder 228 which in turn decodes or interprets the instruc-
tions. For example, in one embodiment, the decoder decodes
a received instruction into one or more operations called
“micro-instructions” or “micro-operations” (also called
micro op or uops) that the machine may execute. In other
embodiments, the decoder parses the instruction into an
opcode and corresponding data and control fields that may be
used by the micro-architecture to perform operations in
accordance with one embodiment. In one embodiment, trace
cache 230 may assemble decoded uops into program ordered
sequences or traces in uop queue 234 for execution. When
trace cache 230 encounters a complex instruction, microcode
ROM 232 provides the uops needed to complete the opera-
tion.

Some instructions may be converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, if more than four micro-ops
are needed to complete an instruction, decoder 228 may
access microcode ROM 232 to perform the instruction. In one
embodiment, an instruction may be decoded into a small
number of micro ops for processing at instruction decoder
228. In another embodiment, an instruction may be stored
within microcode ROM 232 should a number of micro-ops be
needed to accomplish the operation. Trace cache 230 refers to
an entry point programmable logic array (PLA) to determine
a correct micro-instruction pointer for reading the micro-code
sequences to complete one or more instructions in accordance
with one embodiment from micro-code ROM 232. After
microcode ROM 232 finishes sequencing micro-ops for an
instruction, front end 201 of the machine may resume fetch-
ing micro-ops from trace cache 230.

Out-of-order execution engine 203 may prepare instruc-
tions for execution. The out-of-order execution logic has a
number of buffers to smooth out and re-order the flow of
instructions to optimize performance as they go down the
pipeline and get scheduled for execution. The allocator logic
allocates the machine buffers and resources that each uop
needs in order to execute. The register renaming logic
renames logic registers onto entries in a register file. The
allocator also allocates an entry for each uop in one of the two
uop queues, one for memory operations and one for non-
memory operations, in front of the instruction schedulers:
memory scheduler, fast scheduler 202, slow/general floating
point scheduler 204, and simple floating point scheduler 206.
Uop schedulers 202, 204, 206, determine when a uop is ready
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to execute based on the readiness of their dependent input
register operand sources and the availability of the execution
resources the uops need to complete their operation. Fast
scheduler 202 of one embodiment may schedule on each half
of'the main clock cycle while the other schedulers may only
schedule once per main processor clock cycle. The schedulers
arbitrate for the dispatch ports to schedule uops for execution.

Register files 208, 210 may be arranged between schedul-
ers 202, 204, 206, and execution units 212, 214, 216, 218,
220, 222, 224 in execution block 211. Each of register files
208, 210 perform integer and floating point operations,
respectively. Each register file 208, 210, may include a bypass
network that may bypass or forward just completed results
that have not yet been written into the register file to new
dependent uops. Integer register file 208 and floating point
register file 210 may communicate data with the other. In one
embodiment, integer register file 208 may be split into two
separate register files, one register file for low-order thirty-
two bits of data and a second register file for high order
thirty-two bits of data. Floating point register file 210 may
include 128-bit wide entries because floating point instruc-
tions typically have operands from 64 to 128 bits in width.

Execution block 211 may contain execution units 212, 214,
216, 218, 220, 222, 224. Execution units 212, 214, 216, 218,
220, 222, 224 may execute the instructions. Execution block
211 may include register files 208, 210 that store the integer
and floating point data operand values that the micro-instruc-
tions need to execute. In one embodiment, processor 200 may
comprise a number of execution units: address generation
unit (AGU) 212, AGU 214, fast ALU 216, fast ALU 218, slow
ALU 220, floating point ALU 222, floating point move unit
224. In another embodiment, floating point execution blocks
222,224, may execute floating point, MMX, SIMD, and SSE,
orother operations. In yet another embodiment, floating point
ALU 222 may include a 64-bit by 64-bit floating point divider
to execute divide, square root, and remainder micro-ops. In
various embodiments, instructions involving a floating point
value may be handled with the floating point hardware. In one
embodiment, ALU operations may be passed to high-speed
ALU execution units 216, 218. High-speed ALUs 216, 218
may execute fast operations with an effective latency of half
a clock cycle. In one embodiment, most complex integer
operations go to slow AL U 220 as slow ALU 220 may include
integer execution hardware for long-latency type of opera-
tions, such as a multiplier, shifts, flag logic, and branch pro-
cessing. Memory load/store operations may be executed by
AGUs 212, 214. In one embodiment, integer AL.Us 216, 218,
220 may perform integer operations on 64-bit data operands.
In other embodiments, ALUs 216, 218, 220 may be imple-
mented to support a variety of data bit sizes including sixteen,
thirty-two, 128, 256, etc. Similarly, floating point units 222,
224 may be implemented to support a range of operands
having bits of various widths. In one embodiment, floating
pointunits 222,224, may operate on 128-bit wide packed data
operands in conjunction with SIMD and multimedia instruc-
tions.

In one embodiment, uops schedulers 202, 204, 206, dis-
patch dependent operations before the parent load has fin-
ished executing. As uops may be speculatively scheduled and
executed in processor 200, processor 200 may also include
logic to handle memory misses. If a data load misses in the
data cache, there may be dependent operations in flight in the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes instruc-
tions that use incorrect data. Only the dependent operations
might need to be replayed and the independent ones may be
allowed to complete. The schedulers and replay mechanism
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of one embodiment of a processor may also be designed to
catch instruction sequences for text string comparison opera-
tions.

The term “registers” may refer to the on-board processor
storage locations that may be used as part of instructions to
identify operands. In other words, registers may be those that
may be usable from the outside of the processor (from a
programmer’s perspective). However, in some embodiments
registers might not be limited to a particular type of circuit.
Rather, a register may store data, provide data, and perform
the functions described herein. The registers described herein
may be implemented by circuitry within a processor using
any number of different techniques, such as dedicated physi-
cal registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynami-
cally allocated physical registers, etc. In one embodiment,
integer registers store 32-bit integer data. A register file of one
embodiment also contains eight multimedia SIMD registers
for packed data. For the discussions below, the registers may
be understood to be data registers designed to hold packed
data, such as 64-bit wide MMX™ registers (also referred to as
‘mm’ registers in some instances) in microprocessors enabled
with MMX technology from Intel Corporation of Santa Clara,
Calif. These MMX registers, available in both integer and
floating point forms, may operate with packed data elements
that accompany SIMD and SSE instructions. Similarly, 128-
bit wide XMM registers relating to SSE2, SSE3, SSE4, or
beyond (referred to generically as “SSEx”) technology may
hold such packed data operands. In one embodiment, in stor-
ing packed data and integer data, the registers do not need to
differentiate between the two data types. In one embodiment,
integer and floating point may be contained in the same reg-
ister file or different register files. Furthermore, in one
embodiment, floating point and integer data may be stored in
different registers or the same registers.

In the examples of the following figures, a number of data
operands may be described. FIG. 3A illustrates various
packed data type representations in multimedia registers, in
accordance with embodiments of the present disclosure. FIG.
3 A illustrates data types for a packed byte 310, a packed word
320, and a packed doubleword (dword) 330 for 128-bit wide
operands. Packed byte format 310 of this example may be 128
bits long and contains sixteen packed byte data elements. A
byte may be defined, for example, as eight bits of data. Infor-
mation for each byte data element may be stored in bit 7
through bit 0 for byte 0, bit 15 through bit 8 for byte 1, bit 23
through bit 16 for byte 2, and finally bit 120 through bit 127
for byte 15. Thus, all available bits may be used in the register.
This storage arrangement increases the storage efficiency of
the processor. As well, with sixteen data elements accessed,
one operation may now be performed on sixteen data ele-
ments in parallel.

Generally, a data element may include an individual piece
of data that is stored in a single register or memory location
with other data elements of the same length. In packed data
sequences relating to SSEx technology, the number of data
elements stored in a XMM register may be 128 bits divided by
the length in bits of an individual data element. Similarly, in
packed data sequences relating to MM X and SSE technology,
the number of data elements stored in an MMX register may
be 64 bits divided by the length in bits of an individual data
element. Although the data types illustrated in FIG. 3A may
be 128 bits long, embodiments of the present disclosure may
also operate with 64-bit wide or other sized operands. Packed
word format 320 of this example may be 128 bits long and
contains eight packed word data elements. Each packed word
contains sixteen bits of information. Packed doubleword for-
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mat 330 of FIG. 3A may be 128 bits long and contains four
packed doubleword data elements. Each packed doubleword
data element contains thirty-two bits of information. A
packed quadword may be 128 bits long and contain two
packed quad-word data elements.

FIG. 3B illustrates possible in-register data storage for-
mats, in accordance with embodiments of the present disclo-
sure. Each packed data may include more than one indepen-
dent data element. Three packed data formats are illustrated;
packed half 341, packed single 342, and packed double 343.
One embodiment of packed half 341, packed single 342, and
packed double 343 contain fixed-point data elements. For
another embodiment one or more of packed half 341, packed
single 342, and packed double 343 may contain floating-point
data elements. One embodiment of packed half 341 may be
128 bits long containing eight 16-bit data elements. One
embodiment of packed single 342 may be 128 bits long and
contains four 32-bit data elements. One embodiment of
packed double 343 may be 128 bits long and contains two
64-bit data elements. It will be appreciated that such packed
data formats may be further extended to other register
lengths, for example, to 96-bits, 160-bits, 192-bits, 224-bits,
256-bits or more.

FIG. 3C illustrates various signed and unsigned packed
data type representations in multimedia registers, in accor-
dance with embodiments of the present disclosure. Unsigned
packed byte representation 344 illustrates the storage of an
unsigned packed byte in a SIMD register. Information for
each byte data element may be stored in bit 7 through bit 0 for
byte 0, bit 15 through bit 8 for byte 1, bit 23 through bit 16 for
byte 2, and finally bit 120 through bit 127 for byte 15. Thus,
all available bits may be used in the register. This storage
arrangement may increase the storage efficiency of the pro-
cessor. As well, with sixteen data elements accessed, one
operation may now be performed on sixteen data elements in
a parallel fashion. Signed packed byte representation 345
illustrates the storage of a signed packed byte. Note that the
eighth bit of every byte data element may be the sign indica-
tor. Unsigned packed word representation 346 illustrates how
word seven through word zero may be stored in a SIMD
register. Signed packed word representation 347 may be simi-
lar to the unsigned packed word in-register representation
346. Note that the sixteenth bit of each word data element may
be the sign indicator. Unsigned packed doubleword represen-
tation 348 shows how doubleword data elements are stored.
Signed packed doubleword representation 349 may be similar
to unsigned packed doubleword in-register representation
348. Note that the necessary sign bit may be the thirty-second
bit of each doubleword data element.

FIG. 3D illustrates an embodiment of an operation encod-
ing (opcode). Furthermore, format 360 may include register/
memory operand addressing modes corresponding with a
type of opcode format described in the “IA-32 Intel Archi-
tecture Software Developer’s Manual Volume 2: Instruction
Set Reference,” which is available from Intel Corporation,
Santa Clara, Calif. on the world-wide-web (www) at
intel.com/design/litcentr. In one embodiment, and instruction
may be encoded by one or more of fields 361 and 362. Up to
two operand locations per instruction may be identified,
including up to two source operand identifiers 364 and 365. In
one embodiment, destination operand identifier 366 may be
the same as source operand identifier 364, whereas in other
embodiments they may be different. In another embodiment,
destination operand identifier 366 may be the same as source
operand identifier 365, whereas in other embodiments they
may be different. In one embodiment, one of the source
operands identified by source operand identifiers 364 and 365
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may be overwritten by the results of the text string compari-
son operations, whereas in other embodiments identifier 364
corresponds to a source register element and identifier 365
corresponds to a destination register element. In one embodi-
ment, operand identifiers 364 and 365 may identity 32-bit or
64-bit source and destination operands.

FIG. 3E illustrates another possible operation encoding
(opcode) format 370, having forty or more bits, in accordance
with embodiments of the present disclosure. Opcode format
370 corresponds with opcode format 360 and comprises an
optional prefix byte 378. An instruction according to one
embodiment may be encoded by one or more of fields 378,
371, and 372. Up to two operand locations per instruction
may be identified by source operand identifiers 374 and 375
and by prefix byte 378. In one embodiment, prefix byte 378
may beused to identify 32-bit or 64-bit source and destination
operands. In one embodiment, destination operand identifier
376 may be the same as source operand identifier 374,
whereas in other embodiments they may be different. For
another embodiment, destination operand identifier 376 may
be the same as source operand identifier 375, whereas in other
embodiments they may be different. In one embodiment, an
instruction operates on one or more of the operands identified
by operand identifiers 374 and 375 and one or more operands
identified by operand identifiers 374 and 375 may be over-
written by the results of the instruction, whereas in other
embodiments, operands identified by identifiers 374 and 375
may be written to another data element in another register.
Opcode formats 360 and 370 allow register to register,
memory to register, register by memory, register by register,
register by immediate, register to memory addressing speci-
fied in part by MOD fields 363 and 373 and by optional
scale-index-base and displacement bytes.

FIG. 3F illustrates yet another possible operation encoding
(opcode) format, in accordance with embodiments of the
present disclosure. 64-bit single instruction multiple data
(SIMD) arithmetic operations may be performed through a
coprocessor data processing (CDP) instruction. Operation
encoding (opcode) format 380 depicts one such CDP instruc-
tion having CDP opcode fields 382 an0064 389. The type of
CDP instruction, for another embodiment, operations may be
encoded by one or more of fields 383, 384, 387, and 388. Up
to three operand locations per instruction may be identified,
including up to two source operand identifiers 385 and 390
and one destination operand identifier 386. One embodiment
of the coprocessor may operate on eight, sixteen, thirty-two,
and 64-bit values. In one embodiment, an instruction may be
performed on integer data elements. In some embodiments,
an instruction may be executed conditionally, using condition
field 381. For some embodiments, source data sizes may be
encoded by field 383. In some embodiments, Zero (Z), nega-
tive (N), carry (C), and overflow (V) detection may be done on
SIMD fields. For some instructions, the type of saturation
may be encoded by field 384.

FIG. 4A is ablock diagram illustrating an in-order pipeline
and a register renaming stage, out-of-order issue/execution
pipeline, in accordance with embodiments of the present dis-
closure. FIG. 4B is a block diagram illustrating an in-order
architecture core and a register renaming logic, out-of-order
issue/execution logic to be included in a processor, in accor-
dance with embodiments of the present disclosure. The solid
lined boxes in FIG. 4A illustrate the in-order pipeline, while
the dashed lined boxes illustrates the register renaming, out-
of-order issue/execution pipeline. Similarly, the solid lined
boxes in FIG. 4B illustrate the in-order architecture logic,
while the dashed lined boxes illustrates the register renaming
logic and out-of-order issue/execution logic.
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In FIG. 4A, a processor pipeline 400 may include a fetch
stage 402, a length decode stage 404, a decode stage 406, an
allocation stage 408, a renaming stage 410, a scheduling (also
known as a dispatch or issue) stage 412, a register read/
memory read stage 414, an execute stage 416, a write-back/
memory-write stage 418, an exception handling stage 422,
and a commit stage 424.

In FIG. 4B, arrows denote a coupling between two or more
units and the direction of the arrow indicates a direction of
data flow between those units. FIG. 4B shows processor core
490 including a front end unit 430 coupled to an execution
engine unit 450, and both may be coupled to a memory unit
470.

Core 490 may be a reduced instruction set computing
(RISC) core, a complex instruction set computing (CISC)
core, avery long instruction word (VLIW) core, or a hybrid or
alternative core type. In one embodiment, core 490 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, graphics core, or
the like.

Front end unit 430 may include a branch prediction unit
432 coupled to an instruction cache unit 434. Instruction
cache unit 434 may be coupled to an instruction translation
lookaside bufter (TLB) 436. TLB 436 may be coupled to an
instruction fetch unit 438, which is coupled to a decode unit
440. Decode unit 440 may decode instructions, and generate
as an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which may be decoded from, or which otherwise
reflect, or may be derived from, the original instructions. The
decoder may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read-only memo-
ries (ROMs), etc. In one embodiment, instruction cache unit
434 may be further coupled to a level 2 (L.2) cache unit 476 in
memory unit 470. Decode unit 440 may be coupled to a
rename/allocator unit 452 in execution engine unit 450.

Execution engine unit 450 may include rename/allocator
unit 452 coupled to a retirement unit 454 and a set of one or
more scheduler units 456. Scheduler units 456 represent any
number of different schedulers, including reservations sta-
tions, central instruction window, etc. Scheduler units 456
may be coupled to physical register file units 458. Each of
physical register file units 458 represents one or more physi-
cal register files, different ones of which store one or more
different data types, such as scalar integer, scalar floating
point, packed integer, packed floating point, vector integer,
vector floating point, etc., status (e.g., an instruction pointer
that is the address of the next instruction to be executed), etc.
Physical register file units 458 may be overlapped by retire-
ment unit 154 to illustrate various ways in which register
renaming and out-of-order execution may be implemented
(e.g., using one or more reorder buffers and one or more
retirement register files, using one or more future files, one or
more history buffers, and one or more retirement register
files; using register maps and a pool of registers; etc.). Gen-
erally, the architectural registers may be visible from the
outside of the processor or from a programmer’s perspective.
The registers might not be limited to any known particular
type of circuit. Various different types of registers may be
suitable as long as they store and provide data as described
herein. Examples of suitable registers include, but might not
be limited to, dedicated physical registers, dynamically allo-
cated physical registers using register renaming, combina-
tions of dedicated and dynamically allocated physical regis-
ters, etc. Retirement unit 454 and physical register file units
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458 may be coupled to execution clusters 460. Execution
clusters 460 may include a set of one or more execution units
162 and a set of one or more memory access units 464.
Execution units 462 may perform various operations (e.g.,
shifts, addition, subtraction, multiplication) and on various
types of data (e.g., scalar floating point, packed integer,
packed floating point, vector integer, vector floating point).
While some embodiments may include anumber of execution
units dedicated to specific functions or sets of functions, other
embodiments may include only one execution unit or mul-
tiple execution units that all perform all functions. Scheduler
units 456, physical register file units 458, and execution clus-
ters 460 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file unit, and/or execution cluster—and in the case of a sepa-
rate memory access pipeline, certain embodiments may be
implemented in which only the execution cluster of this pipe-
line has memory access units 464). It should also be under-
stood that where separate pipelines are used, one or more of
these pipelines may be out-of-order issue/execution and the
rest in-order.

The set of memory access units 464 may be coupled to
memory unit 470, which may include a data TLB unit 472
coupled to a data cache unit 474 coupled to a level 2 (L2)
cache unit 476. In one exemplary embodiment, memory
access units 464 may include a load unit, a store address unit,
and a store data unit, each of which may be coupled to data
TLB unit 472 in memory unit 470. L2 cache unit 476 may be
coupled to one or more other levels of cache and eventually to
a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement
pipeline 400 as follows: 1) instruction fetch 438 may perform
fetch and length decoding stages 402 and 404; 2) decode unit
440 may perform decode stage 406; 3) rename/allocator unit
452 may perform allocation stage 408 and renaming stage
410; 4) scheduler units 456 may perform schedule stage 412;
5) physical register file units 458 and memory unit 470 may
perform register read/memory read stage 414; execution clus-
ter 460 may perform execute stage 416; 6) memory unit 470
and physical register file units 458 may perform write-back/
memory-write stage 418; 7) various units may be involved in
the performance of exception handling stage 422; and 8)
retirement unit 454 and physical register file units 458 may
perform commit stage 424.

Core 490 may support one or more instructions sets (e.g.,
the x86 instruction set (with some extensions that have been
added with newer versions); the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif.; the ARM instruction set
(with optional additional extensions such as NEON) of ARM
Holdings of Sunnyvale, Calif.).

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads) in a variety of manners. Multithreading support
may be performed by, for example, including time sliced
multithreading, simultaneous multithreading (where a single
physical core provides a logical core for each of the threads
that physical core is simultaneously multithreading), or a
combination thereof. Such a combination may include, for
example, time sliced fetching and decoding and simultaneous
multithreading thereafter such as in the Intel® Hyperthread-
ing technology.
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While register renaming may be described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor may also include a
separate instruction and data cache units 434/474 and a
shared 1.2 cache unit 476, other embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that may be external to the core and/or the processor. In
other embodiments, all of the cache may be external to the
core and/or the processor.

FIG. 5A is a block diagram of a processor 500, in accor-
dance with embodiments of the present disclosure. In one
embodiment, processor 500 may include a multicore proces-
sor. Processor 500 may include a system agent 510 commu-
nicatively coupled to one or more cores 502. Furthermore,
cores 502 and system agent 510 may be communicatively
coupled to one or more caches 506. Cores 502, system agent
510, and caches 506 may be communicatively coupled via
one or more memory control units 552. Furthermore, cores
502, system agent 510, and caches 506 may be communica-
tively coupled to a graphics module 560 via memory control
units 552.

Processor 500 may include any suitable mechanism for
interconnecting cores 502, system agent 510, and caches 506,
and graphics module 560. In one embodiment, processor 500
may include a ring-based interconnect unit 508 to intercon-
nect cores 502, system agent 510, and caches 506, and graph-
ics module 560. In other embodiments, processor 500 may
include any number of well-known techniques for intercon-
necting such units. Ring-based interconnect unit 508 may
utilize memory control units 552 to facilitate interconnec-
tions.

Processor 500 may include a memory hierarchy compris-
ing one or more levels of caches within the cores, one or more
shared cache units such as caches 506, or external memory
(not shown) coupled to the set of integrated memory control-
ler units 552. Caches 506 may include any suitable cache. In
one embodiment, caches 506 may include one or more mid-
level caches, such as level 2 (1.2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or com-
binations thereof.

In various embodiments, one or more of cores 502 may
perform multithreading. System agent 510 may include com-
ponents for coordinating and operating cores 502. System
agent unit 510 may include for example a power control unit
(PCU). The PCU may be or include logic and components
needed for regulating the power state of cores 502. System
agent 510 may include a display engine 512 for driving one or
more externally connected displays or graphics module 560.
System agent 510 may include an interface 1214 for commu-
nications busses for graphics. In one embodiment, interface
1214 may be implemented by PCI Express (PCle). In a fur-
ther embodiment, interface 1214 may be implemented by PCI
Express Graphics (PEG). System agent 510 may include a
direct media interface (DMI) 516. DMI 516 may provide
links between different bridges on a motherboard or other
portion of a computer system. System agent 510 may include
a PCle bridge 1218 for providing PCle links to other elements
of a computing system. PCle bridge 1218 may be imple-
mented using a memory controller 1220 and coherence logic
1222.

Cores 502 may be implemented in any suitable manner.
Cores 502 may be homogenous or heterogeneous in terms of
architecture and/or instruction set. In one embodiment, some
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of cores 502 may be in-order while others may be out-of-
order. In another embodiment, two or more of cores 502 may
execute the same instruction set, while others may execute
only a subset of that instruction set or a different instruction
set.

Processor 500 may include a general-purpose processor,
such as a Core™ 13, i5, i7, 2 Duo and Quad, Xeon™, Ita-
nium™, XScale™ or StrongARM™ processor, which may
be available from Intel Corporation, of Santa Clara, Calif.
Processor 500 may be provided from another company, such
as ARM Holdings, Ltd, MIPS, etc. Processor 500 may be a
special-purpose processor, such as, for example, a network or
communication processor, compression engine, graphics
processor, co-processor, embedded processor, or the like.
Processor 500 may be implemented on one or more chips.
Processor 500 may be a part of and/or may be implemented on
one or more substrates using any of a number of process
technologies, such as, for example, BICMOS, CMOS, or
NMOS.

In one embodiment, a given one of caches 506 may be
shared by multiple ones of cores 502. In another embodiment,
a given one of caches 506 may be dedicated to one of cores
502. The assignment of caches 506 to cores 502 may be
handled by a cache controller or other suitable mechanism. A
given one of caches 506 may be shared by two or more cores
502 by implementing time-slices of a given cache 506.

Graphics module 560 may implement an integrated graph-
ics processing subsystem. In one embodiment, graphics mod-
ule 560 may include a graphics processor. Furthermore,
graphics module 560 may include a media engine 565. Media
engine 565 may provide media encoding and video decoding.

FIG. 5B is a block diagram of an example implementation
of'a core 502, in accordance with embodiments of the present
disclosure. Core 502 may include a front end 570 communi-
catively coupled to an out-of-order engine 580. Core 502 may
be communicatively coupled to other portions of processor
500 through cache hierarchy 503.

Front end 570 may be implemented in any suitable manner,
such as fully or in part by front end 201 as described above. In
one embodiment, front end 570 may communicate with other
portions of processor 500 through cache hierarchy 503. In a
further embodiment, front end 570 may fetch instructions
from portions of processor 500 and prepare the instructions to
be used later in the processor pipeline as they are passed to
out-of-order execution engine 580.

Out-of-order execution engine 580 may be implemented in
any suitable manner, such as fully or in part by out-of-order
execution engine 203 as described above. Out-of-order
execution engine 580 may prepare instructions received from
front end 570 for execution. Out-of-order execution engine
580 may include an allocate module 1282. In one embodi-
ment, allocate module 1282 may allocate resources of pro-
cessor 500 or other resources, such as registers or buffers, to
execute a given instruction. Allocate module 1282 may make
allocations in schedulers, such as a memory scheduler, fast
scheduler, or floating point scheduler. Such schedulers may
be represented in FIG. 5B by resource schedulers 584. Allo-
cate module 1282 may be implemented fully or in part by the
allocation logic described in conjunction with FIG. 2.
Resource schedulers 584 may determine when an instruction
is ready to execute based on the readiness of a given
resource’s sources and the availability of execution resources
needed to execute an instruction. Resource schedulers 584
may be implemented by, for example, schedulers 202, 204,
206 as discussed above. Resource schedulers 584 may sched-
ule the execution of instructions upon one or more resources.
In one embodiment, such resources may be internal to core



US 9,405,706 B2

19

502, and may be illustrated, for example, as resources 586. In
another embodiment, such resources may be external to core
502 and may be accessible by, for example, cache hierarchy
503. Resources may include, for example, memory, caches,
register files, or registers. Resources internal to core 502 may
be represented by resources 586 in FIG. 5B. As necessary,
values written to or read from resources 586 may be coordi-
nated with other portions of processor 500 through, for
example, cache hierarchy 503. As instructions are assigned
resources, they may be placed into a reorder buffer 588.
Reorder buffer 588 may track instructions as they are
executed and may selectively reorder their execution based
upon any suitable criteria of processor 500. In one embodi-
ment, reorder buffer 588 may identify instructions or a series
of instructions that may be executed independently. Such
instructions or a series of instructions may be executed in
parallel from other such instructions. Parallel execution in
core 502 may be performed by any suitable number of sepa-
rate execution blocks or virtual processors. In one embodi-
ment, shared resources—such as memory, registers, and
caches—may be accessible to multiple virtual processors
within a given core 502. In other embodiments, shared
resources may be accessible to multiple processing entities
within processor 500.

Cache hierarchy 503 may be implemented in any suitable
manner. For example, cache hierarchy 503 may include one
or more lower or mid-level caches, such as caches 572, 574.
Inone embodiment, cache hierarchy 503 may include an LL.C
595 communicatively coupled to caches 572, 574. In another
embodiment, LL.C 595 may be implemented in a module 590
accessible to all processing entities of processor 500. In a
further embodiment, module 590 may be implemented in an
uncore module of processors from Intel, Inc. Module 590
may include portions or subsystems of processor 500 neces-
sary for the execution of core 502 but might not be imple-
mented within core 502. Besides LL.C 595, Module 590 may
include, for example, hardware interfaces, memory coher-
ency coordinators, interprocessor interconnects, instruction
pipelines, or memory controllers. Access to RAM 599 avail-
able to processor 500 may be made through module 590 and,
more specifically, LL.C 595. Furthermore, other instances of
core 502 may similarly access module 590. Coordination of
the instances of core 502 may be facilitated in part through
module 590.

FIGS. 6-8 may illustrate exemplary systems suitable for
including processor 500, while FIG. 9 may illustrate an exem-
plary system on a chip (SoC) that may include one or more of
cores 502. Other system designs and implementations known
in the arts for laptops, desktops, handheld PCs, personal
digital assistants, engineering workstations, servers, network
devices, network hubs, switches, embedded processors, digi-
tal signal processors (DSPs), graphics devices, video game
devices, set-top boxes, micro controllers, cell phones, por-
table media players, hand held devices, and various other
electronic devices, may also be suitable. In general, a huge
variety of systems or electronic devices that incorporate a
processor and/or other execution logic as disclosed herein
may be generally suitable.

FIG. 6 illustrates a block diagram of a system 600, in
accordance with embodiments of the present disclosure. Sys-
tem 600 may include one or more processors 610, 615, which
may be coupled to graphics memory controller hub (GMCH)
620. The optional nature of additional processors 615 is
denoted in FIG. 6 with broken lines.

Each processor 610,615 may be some version of processor
500. However, it should be noted that integrated graphics
logic and integrated memory control units might not exist in
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processors 610,615. FIG. 6 illustrates that GMCH 620 may be
coupled to amemory 640 that may be, for example, a dynamic
random access memory (DRAM). The DRAM may, for at
least one embodiment, be associated with a non-volatile
cache.

GMCH 620 may be a chipset, or a portion of a chipset.
GMCH 620 may communicate with processors 610, 615 and
control interaction between processors 610, 615 and memory
640. GMCH 620 may also act as an accelerated bus interface
between the processors 610, 615 and other elements of sys-
tem 600. In one embodiment, GMCH 620 communicates
with processors 610, 615 via a multi-drop bus, such as a
frontside bus (FSB) 695.

Furthermore, GMCH 620 may be coupled to a display 645
(such as a flat panel display). In one embodiment, GMCH 620
may include an integrated graphics accelerator. GMCH 620
may be further coupled to an input/output (I/0) controller hub
(ICH) 650, which may be used to couple various peripheral
devices to system 600. External graphics device 660 may
include be a discrete graphics device coupled to ICH 650
along with another peripheral device 670.

In other embodiments, additional or different processors
may also be present in system 600. For example, additional
processors 610, 615 may include additional processors that
may be the same as processor 610, additional processors that
may be heterogeneous or asymmetric to processor 610, accel-
erators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or
any other processor. There may be a variety of differences
between the physical resources 610, 615 in terms of a spec-
trum of metrics of merit including architectural, micro-archi-
tectural, thermal, power consumption characteristics, and the
like. These differences may eftectively manifest themselves
as asymmetry and heterogeneity amongst processors 610,
615. For at least one embodiment, various processors 610,
615 may reside in the same die package.

FIG. 7 illustrates a block diagram of a second system 700,
in accordance with embodiments ofthe present disclosure. As
shown in FIG. 7, multiprocessor system 700 may include a
point-to-point interconnect system, and may include a first
processor 770 and a second processor 780 coupled via a
point-to-point interconnect 750. Each of processors 770 and
780 may be some version of processor 500 as one or more of
processors 610,615.

While FIG. 7 may illustrate two processors 770, 780, it is to
beunderstood that the scope of the present disclosure is not so
limited. In other embodiments, one or more additional pro-
cessors may be present in a given processor.

Processors 770 and 780 are shown including integrated
memory controller units 772 and 782, respectively. Processor
770 may also include as part of its bus controller units point-
to-point (P-P) interfaces 776 and 778; similarly, second pro-
cessor 780 may include P-P interfaces 786 and 788. Proces-
sors 770, 780 may exchange information via a point-to-point
(P-P) interface 750 using P-P interface circuits 778, 788. As
shown in FIG. 7, IMCs 772 and 782 may couple the proces-
sors to respective memories, namely a memory 732 and a
memory 734, which in one embodiment may be portions of
main memory locally attached to the respective processors.

Processors 770, 780 may each exchange information with
a chipset 790 via individual P-P interfaces 752, 754 using
point to point interface circuits 776, 794, 786, 798. In one
embodiment, chipset 790 may also exchange information
with a high-performance graphics circuit 738 via a high-
performance graphics interface 739.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
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the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 790 may be coupled to a first bus 716 via an
interface 796. In one embodiment, first bus 716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present disclosure is
not so limited.

As shown in FIG. 7, various 1/O devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. In one embodiment,
second bus 720 may be a low pin count (L.PC) bus. Various
devices may be coupled to second bus 720 including, for
example, a keyboard and/or mouse 722, communication
devices 727 and a storage unit 728 such as a disk drive or other
mass storage device which may include instructions/code and
data 730, in one embodiment. Further, an audio /O 724 may
be coupled to second bus 720. Note that other architectures
may be possible. For example, instead of the point-to-point
architecture of FIG. 7, a system may implement a multi-drop
bus or other such architecture.

FIG. 8 illustrates a block diagram of a third system 800 in
accordance with embodiments of the present disclosure. Like
elements in FIGS. 7 and 8 bear like reference numerals, and
certain aspects of FIG. 7 have been omitted from FIG. 8 in
order to avoid obscuring other aspects of FIG. 8.

FIG. 8 illustrates that processors 870, 880 may include
integrated memory and I/O control logic (“CL”) 872 and 882,
respectively. For at least one embodiment, CL. 872, 882 may
include integrated memory controller units such as that
described above in connection with FIGS. 5 and 7. In addi-
tion. CL 872, 882 may also include 1/O control logic. FIG. 8
illustrates that not only memories 832, 834 may be coupled to
CL 872, 882, but also that /O devices 814 may also be
coupled to control logic 872, 882. Legacy /O devices 815
may be coupled to chipset 890.

FIG. 9 illustrates a block diagram of a SoC 900, in accor-
dance with embodiments of the present disclosure. Similar
elements in FIG. 5 bear like reference numerals. Also, dashed
lined boxes may represent optional features on more
advanced SoCs. An interconnect units 902 may be coupled to:
an application processor 910 which may include a set of one
or more cores 902A-N and shared cache units 906; a system
agent unit 910; a bus controller units 916; an integrated
memory controller units 914; a set or one or more media
processors 920 which may include integrated graphics logic
908, an image processor 924 for providing still and/or video
camera functionality, an audio processor 926 for providing
hardware audio acceleration, and a video processor 928 for
providing video encode/decode acceleration; an static ran-
dom access memory (SRAM) unit 930; a direct memory
access (DMA)unit 932; and a display unit 940 for coupling to
one or more external displays.

FIG. 10illustrates a processor containing a central process-
ing unit (CPU) and a graphics processing unit (GPU), which
may perform at least one instruction, in accordance with
embodiments of the present disclosure. In one embodiment,
an instruction to perform operations according to at least one
embodiment could be performed by the CPU. In another
embodiment, the instruction could be performed by the GPU.
In still another embodiment, the instruction may be per-
formed through a combination of operations performed by
the GPU and the CPU. For example, in one embodiment, an
instruction in accordance with one embodiment may be
received and decoded for execution on the GPU. However,
one or more operations within the decoded instruction may be
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performed by a CPU and the result returned to the GPU for
final retirement of the instruction. Conversely, in some
embodiments, the CPU may act as the primary processor and
the GPU as the co-processor.

In some embodiments, instructions that benefit from
highly parallel, throughput processors may be performed by
the GPU, while instructions that benefit from the performance
of'processors that benefit from deeply pipelined architectures
may be performed by the CPU. For example, graphics, sci-
entific applications, financial applications and other parallel
workloads may benefit from the performance of the GPU and
be executed accordingly, whereas more sequential applica-
tions, such as operating system kernel or application code
may be better suited for the CPU.

In FIG. 10, processor 1000 includes a CPU 1005, GPU
1010, image processor 1015, video processor 1020, USB
controller 1025, UART controller 1030, SPI/SDIO controller
1035, display device 1040, memory interface controller 1045,
MIPI controller 1050, flash memory controller 1055, dual
data rate (DDR) controller 1060, security engine 1065, and
I?S/1C controller 1070. Other logic and circuits may be
included in the processor of FIG. 10, including more CPUs or
GPUs and other peripheral interface controllers.

One or more aspects of at least one embodiment may be
implemented by representative data stored on a machine-
readable medium which represents various logic within the
processor, which when read by a machine causes the machine
to fabricate logic to perform the techniques described herein.
Such representations, known as “IP cores” may be stored on
a tangible, machine-readable medium (“tape™) and supplied
to various customers or manufacturing facilities to load into
the fabrication machines that actually make the logic or pro-
cessor. For example, IP cores, such as the Cortex™ family of
processors developed by ARM Holdings, [.td. and Loongson
IP cores developed the Institute of Computing Technology
(ICT) ofthe Chinese Academy of Sciences may be licensed or
sold to various customers or licensees, such as Texas Instru-
ments, Qualcomm, Apple, or Samsung and implemented in
processors produced by these customers or licensees.

FIG. 11 illustrates a block diagram illustrating the devel-
opment of IP cores, in accordance with embodiments of the
present disclosure. Storage 1130 may include simulation
software 1120 and/or hardware or software model 1110. In
one embodiment, the data representing the IP core design
may be provided to storage 1130 via memory 1140 (e.g., hard
disk), wired connection (e.g., internet) 1150 or wireless con-
nection 1160. The IP core information generated by the simu-
lation tool and model may then be transmitted to a fabrication
facility where it may be fabricated by a 3" party to perform at
least one instruction in accordance with at least one embodi-
ment.

In some embodiments, one or more instructions may cor-
respond to a first type or architecture (e.g., x86) and be trans-
lated or emulated on a processor of a different type or archi-
tecture (e.g., ARM). An instruction, according to one
embodiment, may therefore be performed on any processor or
processor type, including ARM, x86, MIPS, a GPU, or other
processor type or architecture.

FIG. 12 illustrates how an instruction of a first type may be
emulated by a processor of a different type, in accordance
with embodiments of the present disclosure. In FIG. 12, pro-
gram 1205 contains some instructions that may perform the
same or substantially the same function as an instruction
according to one embodiment. However the instructions of
program 1205 may be of a type and/or format that is different
from or incompatible with processor 1215, meaning the
instructions of the type in program 1205 may not be able to
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execute natively by the processor 1215. However, with the
help of emulation logic, 1210, the instructions of program
1205 may be translated into instructions that may be natively
be executed by the processor 1215. In one embodiment, the
emulation logic may be embodied in hardware. In another
embodiment, the emulation logic may be embodied in a tan-
gible, machine-readable medium containing software to
translate instructions of the type in program 1205 into the type
natively executable by processor 1215. In other embodi-
ments, emulation logic may be a combination of fixed-func-
tion or programmable hardware and a program stored on a
tangible, machine-readable medium. In one embodiment, the
processor contains the emulation logic, whereas in other
embodiments, the emulation logic exists outside of the pro-
cessor and may be provided by a third party. In one embodi-
ment, the processor may load the emulation logic embodied
in a tangible, machine-readable medium containing software
by executing microcode or firmware contained in or associ-
ated with the processor.

FIG. 13 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 13 shows a program in
a high level language 1302 may be compiled using an x86
compiler 1304 to generate x86 binary code 1306 that may be
natively executed by a processor with at least one x86 instruc-
tion set core 1316. The processor with at least one x86 instruc-
tion set core 1316 represents any processor that can perform
substantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core, in
order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. The x86
compiler 1304 represents a compiler that is operable to gen-
erate x86 binary code 1306 (e.g., object code) that can, with or
without additional linkage processing, be executed on the
processor with at least one x86 instruction set core 1316.
Similarly, FIG. 13 shows the program in the high level lan-
guage 1302 may be compiled using an alternative instruction
set compiler 1308 to generate alternative instruction set
binary code 1310 that may be natively executed by a proces-
sor without at least one x86 instruction set core 1314 (e.g., a
processor with cores that execute the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif. and/or that execute
the ARM instruction set of ARM Holdings of Sunnyvale,
Calif.).

The instruction converter 1312 is used to convert the x86
binary code 1306 into alternative instruction set binary code
1311 that may be natively executed by the processor without
an x86 instruction set core 1314. This converted code may or
may not be the same as the alternative instruction set binary
code 1310 resulting from an alternative instruction set com-
piler 1308; however, the converted code will accomplish the
same general operation and be made up of instructions from
the alternative instruction set. Thus, the instruction converter
1312 represents software, firmware, hardware, or a combina-
tion thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1306.
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FIG. 14 is a block diagram of an instruction set architecture
1400 of a processor, in accordance with embodiments of the
present disclosure. Instruction set architecture 1400 may
include any suitable number or kind of components.

For example, instruction set architecture 1400 may include
processing entities such as one or more cores 1406, 1407 and
a graphics processing unit 1415. Cores 1406, 1407 may be
communicatively coupled to the rest of instruction set archi-
tecture 1400 through any suitable mechanism, such as
through a bus or cache. In one embodiment, cores 1406, 1407
may be communicatively coupled through an 1.2 cache con-
trol 1408, which may include a bus interface unit 1409 and an
L2 cache 1410. Cores 1406, 1407 and graphics processing
unit 1415 may be communicatively coupled to each other and
to the remainder of instruction set architecture 1400 through
interconnect 1410. In one embodiment, graphics processing
unit 1415 may use a video code 1420 defining the manner in
which particular video signals will be encoded and decoded
for output.

Instruction set architecture 1400 may also include any
number or kind of interfaces, controllers, or other mecha-
nisms for interfacing or communicating with other portions
of an electronic device or system. Such mechanisms may
facilitate interaction with, for example, peripherals, commu-
nications devices, other processors, or memory. In the
example of FIG. 14, instruction set architecture 1400 may
include a liquid crystal display (LCD) video interface 1425, a
subscriber interface module (SIM) interface 1430, a boot
ROM interface 1435, a synchronous dynamic random access
memory (SDRAM) controller 1440, a flash controller 1445,
and a serial peripheral interface (SPI) master unit 1450. LCD
video interface 1425 may provide output of video signals
from, for example, GPU 1415 and through, for example, a
mobile industry processor interface (MIPI) 1490 or a high-
definition multimedia interface (HDMI) 1495 to a display.
Such a display may include, for example, an LCD. SIM
interface 1430 may provide access to or from a SIM card or
device. SDRAM controller 1440 may provide access to or
from memory such as an SDRAM chip or module. Flash
controller 1445 may provide access to or from memory such
as flash memory or other instances of RAM. SPI master unit
1450 may provide access to or from communications mod-
ules, such as a Bluetooth module 1470, high-speed 3G
modem 1475, global positioning system module 1480, or
wireless module 1485 implementing a communications stan-
dard such as 802.11.

FIG. 15 is a more detailed block diagram of an instruction
set architecture 1500 of a processor, in accordance with
embodiments of the present disclosure. Instruction architec-
ture 1500 may implement one or more aspects of instruction
set architecture 1400. Furthermore, instruction set architec-
ture 1500 may illustrate modules and mechanisms for the
execution of instructions within a processor.

Instruction architecture 1500 may include a memory sys-
tem 1540 communicatively coupled to one or more execution
entities 1565. Furthermore, instruction architecture 1500
may include a caching and bus interface unit such as unit 1510
communicatively coupled to execution entities 1565 and
memory system 1540. In one embodiment, loading of instruc-
tions into execution entities 1564 may be performed by one or
more stages of execution. Such stages may include, for
example, instruction prefetch stage 1530, dual instruction
decode stage 1550, register rename stage 155, issue stage
1560, and writeback stage 1570.

In another embodiment, memory system 1540 may include
aretirement pointer 1582. Retirement pointer 1582 may store
a value identifying the program order (PO) of the last retired
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instruction. Retirement pointer 1582 may be set by, for
example, retirement unit 454. If no instructions have yet been
retired, retirement pointer 1582 may include a null value.

Execution entities 1565 may include any suitable number
and kind of mechanisms by which a processor may execute
instructions. In the example of FIG. 15, execution entities
1565 may include ALU/multiplication units (MUL) 1566,
ALUs 1567, and floating point units (FPU) 1568. In one
embodiment, such entities may make use of information con-
tained within a given address 1569. Execution entities 1565 in
combination with stages 1530, 1550, 1555, 1560, 1570 may
collectively form an execution unit.

Unit 1510 may be implemented in any suitable manner. In
one embodiment, unit 1510 may perform cache control. In
such an embodiment, unit 1510 may thus include a cache
1525. Cache 1525 may be implemented, in a further embodi-
ment, as an L2 unified cache with any suitable size, such as
zero, 128k, 256k, 512k, 1M, or 2M bytes of memory. In
another, further embodiment, cache 1525 may be imple-
mented in error-correcting code memory. In another embodi-
ment, unit 1510 may perform bus interfacing to other portions
of'a processor or electronic device. In such an embodiment,
unit 1510 may thus include a bus interface unit 1520 for
communicating over an interconnect, intraprocessor bus,
interprocessor bus, or other communication bus, port, or line.
Bus interface unit 1520 may provide interfacing in order to
perform, for example, generation of the memory and input/
output addresses for the transfer of data between execution
entities 1565 and the portions of a system external to instruc-
tion architecture 1500.

To further facilitate its functions, bus interface unit 1520
may include an interrupt control and distribution unit 1511 for
generating interrupts and other communications to other por-
tions of a processor or electronic device. In one embodiment,
bus interface unit 1520 may include a snoop control unit 1512
that handles cache access and coherency for multiple process-
ing cores. In a further embodiment, to provide such function-
ality, snoop control unit 1512 may include a cache-to-cache
transfer unit that handles information exchanges between
different caches. In another, further embodiment, snoop con-
trol unit 1512 may include one or more snoop filters 1514 that
monitors the coherency of other caches (not shown) so that a
cache controller, such as unit 1510, does not have to perform
such monitoring directly. Unit 1510 may include any suitable
number of timers 1515 for synchronizing the actions of
instruction architecture 1500. Also, unit 1510 may include an
AC port 1516.

Memory system 1540 may include any suitable number
and kind of mechanisms for storing information for the pro-
cessing needs of instruction architecture 1500. In one
embodiment, memory system 1504 may include a load store
unit 1530 for storing information such as buffers written to or
read back from memory or registers. In another embodiment,
memory system 1504 may include a translation lookaside
buffer (TLB) 1545 that provides look-up of address values
between physical and virtual addresses. In yet another
embodiment, bus interface unit 1520 may include a memory
management unit (MMU) 1544 for facilitating access to vir-
tual memory. In still yet another embodiment, memory sys-
tem 1504 may include a prefetcher 1543 for requesting
instructions from memory before such instructions are actu-
ally needed to be executed, in order to reduce latency.

The operation of instruction architecture 1500 to execute
an instruction may be performed through different stages. For
example, using unit 1510 instruction prefetch stage 1530 may
access an instruction through prefetcher 1543. Instructions
retrieved may be stored in instruction cache 1532. Prefetch
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stage 1530 may enable an option 1531 for fast-loop mode,
wherein a series of instructions forming a loop that is small
enough to fit within a given cache are executed. In one
embodiment, such an execution may be performed without
needing to access additional instructions from, for example,
instruction cache 1532. Determination of what instructions to
prefetch may be made by, for example, branch prediction unit
1535, which may access indications of execution in global
history 1536, indications of target addresses 1537, or contents
ofareturn stack 1538 to determine which of branches 1557 of
code will be executed next. Such branches may be possibly
prefetched as a result. Branches 1557 may be produced
through other stages of operation as described below. Instruc-
tion prefetch stage 1530 may provide instructions as well as
any predictions about future instructions to dual instruction
decode stage.

Dual instruction decode stage 1550 may translate a
received instruction into microcode-based instructions that
may be executed. Dual instruction decode stage 1550 may
simultaneously decode two instructions per clock cycle. Fur-
thermore, dual instruction decode stage 1550 may pass its
results to register rename stage 1555. In addition, dual
instruction decode stage 1550 may determine any resulting
branches from its decoding and eventual execution of the
microcode. Such results may be input into branches 1557.

Register rename stage 1555 may translate references to
virtual registers or other resources into references to physical
registers or resources. Register rename stage 1555 may
include indications of such mapping in a register pool 1556.
Register rename stage 1555 may alter the instructions as
received and send the result to issue stage 1560.

Issue stage 1560 may issue or dispatch commands to
execution entities 1565. Such issuance may be performed in
an out-of-order fashion. In one embodiment, multiple instruc-
tions may be held at issue stage 1560 before being executed.
Issue stage 1560 may include an instruction queue 1561 for
holding such multiple commands. Instructions may be issued
by issue stage 1560 to a particular processing entity 1565
based upon any acceptable criteria, such as availability or
suitability of resources for execution of a given instruction. In
one embodiment, issue stage 1560 may reorder the instruc-
tions within instruction queue 1561 such that the first instruc-
tions received might not be the first instructions executed.
Based upon the ordering of instruction queue 1561, additional
branching information may be provided to branches 1557.
Issue stage 1560 may pass instructions to executing entities
1565 for execution.

Upon execution, writeback stage 1570 may write data into
registers, queues, or other structures of instruction set archi-
tecture 1500 to communicate the completion of a given com-
mand. Depending upon the order of instructions arranged in
issue stage 1560, the operation of writeback stage 1570 may
enable additional instructions to be executed. Performance of
instruction set architecture 1500 may be monitored or
debugged by trace unit 1575.

FIG. 16 is a block diagram of an execution pipeline 1600
for an instruction set architecture of a processor, in accor-
dance with embodiments of the present disclosure. Execution
pipeline 1600 may illustrate operation of, for example,
instruction architecture 1500 of FIG. 15.

Execution pipeline 1600 may include any suitable combi-
nation of steps or operations. In 1605, predictions of the
branch that is to be executed next may be made. In one
embodiment, such predictions may be based upon previous
executions of instructions and the results thereof. In 1610,
instructions corresponding to the predicted branch of execu-
tion may be loaded into an instruction cache. In 1615, one or
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more such instructions in the instruction cache may be
fetched for execution. In 1620, the instructions that have been
fetched may be decoded into microcode or more specific
machine language. In one embodiment, multiple instructions
may be simultaneously decoded. In 1625, references to reg-
isters or other resources within the decoded instructions may
be reassigned. For example, references to virtual registers
may be replaced with references to corresponding physical
registers. In 1630, the instructions may be dispatched to
queues for execution. In 1640, the instructions may be
executed. Such execution may be performed in any suitable
manner. In 1650, the instructions may be issued to a suitable
execution entity. The manner in which the instruction is
executed may depend upon the specific entity executing the
instruction. For example, at 1655, an ALU may perform arith-
metic functions. The AL U may utilize a single clock cycle for
its operation, as well as two shifters. In one embodiment, two
ALUs may be employed, and thus two instructions may be
executed at 1655. At 1660, a determination of a resulting
branch may be made. A program counter may be used to
designate the destination to which the branch will be made.
1660 may be executed within a single clock cycle. At 1665,
floating point arithmetic may be performed by one or more
FPUs. The floating point operation may require multiple
clock cycles to execute, such as two to ten cycles. At 1670,
multiplication and division operations may be performed.
Such operations may be performed in four clock cycles. At
1675, loading and storing operations to registers or other
portions of pipeline 1600 may be performed. The operations
may include loading and storing addresses. Such operations
may be performed in four clock cycles. At 1680, write-back
operations may be performed as required by the resulting
operations of 1655-1675.

FIG. 17 is ablock diagram of an electronic device 1700 for
utilizing a processor 1710, in accordance with embodiments
of the present disclosure. Electronic device 1700 may
include, for example, a notebook, an ultrabook, a computer, a
tower server, a rack server, a blade server, a laptop, a desktop,
atablet, a mobile device, a phone, an embedded computer, or
any other suitable electronic device.

Electronic device 1700 may include processor 1710 com-
municatively coupled to any suitable number or kind of com-
ponents, peripherals, modules, or devices. Such coupling
may be accomplished by any suitable kind of bus or interface,
such as I°C bus, system management bus (SMBus), low pin
count (LPC) bus, SPI, high definition audio (HDA) bus, Serial
Advance Technology Attachment (SATA) bus, USB bus (ver-
sions 1, 2, 3), or Universal Asynchronous Receiver/Transmit-
ter (UART) bus.

Such components may include, for example, a display
1724, a touch screen 1725, a touch pad 1730, a near field
communications (NFC) unit 1745, a sensor hub 1740, a ther-
mal sensor 1746, an express chipset (EC) 1735, a trusted
platform module (TPM) 1738, BIOS/firmware/flash memory
1722, a digital signal processor 1760, a drive 1720 such as a
solid state disk (SSD) or a hard disk drive (HDD), a wireless
local area network (WLAN) unit 1750, a Bluetooth unit 1752,
a wireless wide area network (WWAN) unit 1756, a global
positioning system (GPS), a camera 1754 such as a USB 3.0
camera, or a low power double data rate (LPDDR) memory
unit 1715 implemented in, for example, the LPDDR3 stan-
dard. These components may each be implemented in any
suitable manner.

Furthermore, in various embodiments other components
may be communicatively coupled to processor 1710 through
the components discussed above. For example, an accelerom-
eter 1741, ambient light sensor (ALS) 1742, compass 1743,
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and gyroscope 1744 may be communicatively coupled to
sensor hub 1740. A thermal sensor 1739, fan 1737, keyboard
1746, and touch pad 1730 may be communicatively coupled
to EC 1735. Speaker 1763, headphones 1764, and a micro-
phone 1765 may be communicatively coupled to an audio
unit 1764, which may in turn be communicatively coupled to
DSP 1760. Audio unit 1764 may include, for example, an
audio codec and a class D amplifier. A SIM card 1757 may be
communicatively coupled to WWAN unit 1756. Components
such as WLAN unit 1750 and Bluetooth unit 1752, as well as
WWAN unit 1756 may be implemented in a next generation
form factor (NGFF).

Embodiments of the present disclosure involve an instruc-
tion and logic for adaptive dataset priorities. Such priorities
may be used to evaluate and evict elements from caches. FI1G.
18 is a block diagram of a system 1800 for implementing an
instruction and logic for adaptive dataset priorities, in accor-
dance with embodiments of the present disclosure. In one
embodiment, dataset priorities may be assigned to memory
locations by a producer of such dataset priorities. The dataset
priorities may be assigned to, for example, collections of
objects and variables In another embodiment and after a miss
of'a data access, hardware may utilize such dataset priorities
to evaluate whether and how to evict data, such as cachelines,
that otherwise are candidates for eviction. In a further
embodiment, hardware may also consider access histories to
evaluate whether and which cachelines to evict. Candidates
for eviction may hold data from datasets of a high priority and
the hardware may find a different candidate for eviction. In
yet another embodiment, the hardware may override or adapt
the dataset priorities based upon one or more attempted evic-
tions of cachelines holding higher priority data. In still
another embodiment, the hardware may collect and make
available to itself and to software certain metrics of cacheline
evictions to determine that software is experiencing cache-
thrash. In another embodiment, the producer of the dataset
priorities may take corrective action by, for example, adjust-
ing the utilization of dataset priorities to be performed by
hardware, adjusting the assigned dataset priorities, or other
suitable action. The producer of dataset priorities may make
such corrective action based upon a determination that there
is cache thrash occurring. Furthermore, the producer of data
set priorities may also initiate such corrective action based
upon a determination that software is undergoing a transient
or durable transition of phase.

System 1800 may include any suitable number and kind of
elements to perform the operations described herein. Further-
more, although specific elements of system 1800 may be
described herein as performing a specific function, any suit-
able portion of system 1800 may perform the functionality
described herein. System 1800 may fetch, dispatch, execute,
and retire instructions out-of-order.

The producer of dataset priorities may include any suitable
entity to specify priorities of memory locations. Moreover,
the producer of dataset priorities may employ a variety of
alternative forms of identifying the datasets for purposes of
associating dataset priorities. These may include, for
example, specifications of addresses in logical or physical
memory, in locations on disks, as objects in local or remote
file systems, as keys or table locations in databases, as web
addressed entities, and other reasonable means of naming
entities capable of being located through software-accessible
naming systems. In one embodiment, the producer of dataset
priorities may be implemented in software. In another
embodiment, the producer of dataset priorities may include
instructions in software applications specifying the priorities.
Such applications may include, for example, applications
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1810. Applications 1810 may specify dataset priorities in
terms of virtual memory, physical memory, or object identi-
fiers in local and remote object systems. Moreover, applica-
tions 1810 may change dataset priorities, instruct hardware to
perform priority analysis in a given mode, or otherwise take
corrective action based upon hardware adapting to dataset
priorities. In yet another embodiment, the production of
dataset priorities may include instructions in operating sys-
tems. Operating systems, such as operating system 1808, may
specify dataset priorities or translate dataset priorities from
virtual memory (or other object) designations to physical
memory designations. Moreover, operating system 1808 may
change dataset priorities, instruct hardware to perform prior-
ity analysis in a given mode, or otherwise take corrective
action based upon hardware adapting to dataset priorities. In
another embodiment, the production of dataset priorities may
include instructions in a compiler, translator, just-in-time
component, or other suitable entities in a processor 1804.
Such an entity may include a dynamic binary translator
(DBT) 1816. DBT 1816 may specify dataset priorities or
translate dataset priorities from virtual memory designations
to physical memory designations. Moreover, DBT 1816 may
change dataset priorities, instruct hardware to perform prior-
ity analysis in a given mode, or otherwise take corrective
action based upon hardware adapting to dataset priorities.
Any suitable hardware may be used to evaluate and adapt
dataset priorities in view of a need to evict data. In one
embodiment, such hardware may include any cache control-
ler 1844 of processor 1804. Furthermore, the data may need to
be evicted from any suitable data container, such as a
memory, cache, or buffer. The data may need to be evicted
because a data access is made of the container, but the specific
datarequested is unavailable and the container is full. Accord-
ingly, data in the container must be evicted to make room for
the data that is to be used. For example, execution of an
execution unit 1822 in a core 1820 may make a write or read
of'amemory location through a cache hierarchy implemented
in any suitable manner. In another example, the request may
be made of embedded DRAM:s that are managed as transpar-
ent caches. In yet another example, a cache may reside on a
peripheral interface controller such as a PCIl-express storage
or network adapter card. In the example of FIG. 18, the
request may be made of an L1 cache 1824. The requested
resource might not be available in L1 cache 1824, and an
associated L1 cache controller 1826 may make request the
data from a higher level cache, such as 1.2 cache 1828. If the
data is unavailable in L2 cache 1828, an associated L2 cache
controller 1830 may make the request of an .3 cache 1832. If
the requested resource is unavailable in .3 cache 1832, an
associated cache controller 1834 may make the request
directly to the associated resource, such as on-board memory
1836 or external memory 1840. The requested data, when
found in the cache hierarchy, may be propagated down
through the hierarchy. Each cache hierarchy level might
require the ability to evict data lines to make room for such
requested data. In the example of FIG. 18, cache controllers
1844 may represent possible operation of any suitable hard-
ware to evaluate and adapt dataset priorities in view of a need
to evict data. Such hardware may include any suitable one of
cache controllers 1826, 1830, 1834, or cache controllers for
peripherals such as PCI-E devices like network interfaces.
System 1800 may include processor 1804 to perform, fully
or in part, adaptive handling of dataset priorities in applying
an eviction policy. Processor 1804 may be implemented in
part by any processor core, logical processor, processor, or
other processing entity such as those illustrated in FIGS.
1-17. In various embodiments, processor 1804 may include a
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front end 1812 to fetch instructions to be executed; a sched-
uler and allocator 1818 to allocate assign instructions for
execution to execution units 1822 or cores 1820; and one or
more execution units 1822 or cores 1822 to execute the
instructions. Processor 1804 may include other suitable com-
ponents that are not shown, such as allocation units to reserve
alias resources or retirement units to recover resources used
by the instructions.

Front end 1812 may fetch and prepare instructions to be
used by other elements of processor 1804, and may include
any suitable number or kind of components. For example,
front end 1812 may include a decoder 1814 to translate
instructions into microcode commands. Furthermore, front
end 1812 may arrange instructions into parallel groups or
other mechanisms of out-of-order processing. DBT 1816
may be included in front end 1812. Instructions may be pro-
cessed for in-order or out-of-order execution. In one embodi-
ment, such instructions may include instructions for manipu-
lating the adaptive handling of dataset priorities. In another
embodiment, such instructions may include instructions for
specifying dataset priorities. Scheduler 1820 may schedule
instructions to be executed on any suitable execution unit
1822 or core 1822. Cores 1822 may be implemented in any
suitable manner. A given core 1822 may include any suitable
number, kind, and combination of execution units 1822.

In one embodiment, cache controller 1844 may apply evic-
tion policies that are adaptive to information, such as priority
of'datasets, specified by software and to actual behavior expe-
rience in hardware. Some portions of a program’s address
space may be disproportionally important to its performance,
efficiency, or responsiveness. In some embodiments, such
importance may be recognized by software itself, either
through monitoring or programming. Accordingly, software
such as applications 1810, operating system 1808, or DBT
1816 may specify priorities as reflected in priority datasets
1806.

In one embodiment, priority datasets 1806 may specify
virtual memory address ranges and, for each range, a priority
designation such as an integer value wherein a higher value
indicates a higher priority. In another embodiment, priority
datasets 1806 may specify physical memory address ranges
and, for each range, a priority designation. In yet another
embodiment, priority datasets may specify other identifiers
by which data is named and located by software, before or
after being brought into a computer’s physical memory range.
In various embodiments, applications 1810, operating system
1808, or DBT 1816 may generate a first priority dataset and
another of applications 1810, operating system 1808, or DBT
1816 may translate the priority dataset into a different type.
For example, application 1810 may generate a virtual
memory priority dataset that is translated by operating system
1808 into a physical memory priority dataset. Hardware of
processor 1804 may access priority values specified in physi-
cal memory ranges.

Some cache eviction policies may identify a candidate for
eviction according to criteria such as least recently used
(LRU), least frequently used (LFU), First-in First-out (FIFO),
First-in-not-used-first-out (FINUFO), approximately least
recently used (ALRU), or combinations thereof.

However, the use of such policies might not reliably keep
the most critical data in lower level caches close to cores 1820
for faster access. In addition, full management of caches by
software specifying priorities such as applications 1810,
operating system 1808, or DBT 1816 may be too slow to
effectively implement. Furthermore, such management may
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be impossible to be fully drafted into instructions for a spe-
cific application 1810 that can consider the dynamic status of
a cache.

In one embodiment, cache controllers 1844 may apply and
adapt the priorities specified by software by utilizing hyster-
esis in victim selection. Cache controllers may allow higher
priority cachelines to be less readily evicted upon misses of
requests for lower priority addresses. Furthermore, cache
controllers may allow a lower priority cacheline to stay in the
cache only as long as the cacheline has been robustly accessed
or otherwise qualified under cache eviction policies. How-
ever, software may define some address ranges with high
priorities that are not used efficiently. Consequently, cache
controllers 1844 may adapt and override such priorities as
appropriate. The net effect may be equivalent to the software
never describing the priorities initially. Furthermore, if soft-
ware applications exit, and thus do not need to maintain the
priority of the ranges, cache controllers 1844 may behave as
if the software never provided the priorities.

Any suitable mechanism may be used to provide dataset
priorities to hardware such as cache controllers 1844. The
mechanism by which dataset priorities are accessed by hard-
ware might be required to be sufficiently fast so that perfor-
mance of processor 1804 is not degraded. The hardware
might be required to access the dataset priorities as a prelimi-
nary step in the cache eviction process and, accordingly,
delays in such access may cause delay in cache miss handling.
In one embodiment, dataset priorities may be communicated
to hardware through a signature. In another embodiment,
dataset priorities may be communicated to hardware through
a bloom filter. Software may set priority datasets 1806 into a
bloom filter 1842 at any suitable time. Moreover, software
may reset priority datasets 1806 upon a change in applica-
tions, a change in contents of memory, a context switch of
operating system 1808, an attempt to reprioritize memory
ranges upon feedback from hardware, or any other suitable
time.

Upon determining that a cache miss or other similar
request has been made, cache controllers 1844 may read the
priority data from priority datasets 1806 as embodied in
bloom filter 1842. Such data, as resident within bloom filter
1842 or any other suitable structure, may yield a priority
when queried with an address. The set of addresses A at a
given priority 7t may be given as

S(ov):{4ilP(di)=n}

FIG. 19 is an illustration of operation of system 1800 to
perform evaluation and adaptation of priority datasets during
a cache miss, in accordance with embodiments of the present
disclosure. In one embodiment, at (1), software may set the
datasets. Such a dataset may be a mapping of priorities to
ranges of virtual memory and may be performed by applica-
tion 1810, though any suitable entity may set the datasets. At
(2), software may translate the dataset into a physical memory
mapping, if necessary. Such translation may be performed,
for example, by operating system 1808. Moreover, the prior-
ity dataset may be entered into a suitable structure for access
by the hardware, such as bloom filter 1842. The operations of
(1) and (2) may be repeated as many times as necessary and
upon any suitable condition.

At(3), a cache miss or similar data request may be detected
by cache controller 1844. Ifthe cache is full, a cache victim to
be evicted might be identified. Cache controller 1844 may
employ any suitable algorithm to identify a first candidate as
a cache victim. Such a selection may then be evaluated or
adapted according to priority datasets specified by software
and upon previous searching for cache victims. Cache con-
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troller 1844 may identify a candidate cache victim at an
address V, wherein the cache victim is a cacheline with data.

In one embodiment, at (4), cache controller 1844 may
identify the priority of the candidate cache victim as defined
by software. Cache controller 1844 may also identify the
priority of the data that caused the cache miss. Moreover,
cache controller 1844 may identify the priorities by accessing
bloom filter 1842. The priority of the candidate cache victim
may be compared against a threshold or against the priority of
the data that caused the cache miss.

If the candidate cache victim is of a low priority, then the
cache victim may be evicted. In one embodiment, at (5) if the
candidate cache victim is of a high priority, then another
candidate victim may be identified using the operations
described in (3). Cache controller 1844 may search for a
candidate with a lower priority, if one is available. At (6, the
attempted access and eviction may be stored in a record 1902
such that repeated attempts to find a candidate cache victim
may be evaluated. In one embodiment, cache controller 1844
may adapt its cache eviction scheme based upon such data.
The effort of cache controller 1844 to find lower-priority
candidates for cache eviction is thus bounded. In one embodi-
ment, cache controller 1844 may bound the search for lower-
priority candidates based upon the priority of the first or
additional candidate cache victims and upon the priority of
the address that is missed in the cache miss. Cache controller
1844 may thus determine whether the cache is overstuffed
with high priority cachelines that are not being adequately
(according to the cache victim algorithm) used in the cache.
Any suitable manner of monitoring usage of high priority
cachelines may be used by cache controller 1844. In one
embodiment, cache controller 1844 may utilize a moving
window average of the number of failed attempts to evict
high-priority cachelines. Information stored by cache con-
troller 1844 in record 1902 may include any suitable infor-
mation. In one embodiment, such information may include
statistics on how much work has been performed or is needed
to be performed to find low priority cachelines to evict. Such
information may be shared with software so that software
may recognize inadequate priority datasets and readjust
them.

At (7), in one embodiment, cache controller 1844 may
adapt its cache eviction scheme based upon previous attempts
to find a suitable candidate cache victim. The recent history of
cache victim attempts or instructions from software may indi-
cate that the software is going through a transient phase, such
as garbage collection. The priority datasets provided by soft-
ware may be overridden. Furthermore, the producer of the
priority datasets may be informed. At (8), software may
change priorities or otherwise take corrective action at any
suitable time. At (9), the identified victim may be evicted,
even though the identified victim is of a higher priority iden-
tified by software.

In some embodiments, instructions for particular opera-
tions may be given negative priority to encourage their evic-
tion. The instructions may include, for example, certain non-
allocating load operations, push-store operations, or other
load or store operations that carry a negative priority hint for
the data that they access. In other embodiments, priority
datasets may include address range of multiple applications
and thus multiple address spaces.

FIG. 20 is an illustration of operation of system 1800 to
specify dataset priorities, according to embodiments of the
present disclosure. First, one or more address spaces 2002,
2004 may be considered when defining dataset priorities.
Each address space may belong to the same or different
applications or entities. In one embodiment, each address
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space may be defined according to virtual memory regions. In
other embodiments address spaces may be defined recur-
sively as enumerated regions from other address spaces.
Dataset priorities for each region may be defined according to
any suitable prioritization scheme or consideration of the
importance of the underlying data. Such importance may be
evaluated according to execution efficiency.

For example, an application may allocate an address space
2002 including six regions. Region 3 may include a texture
cache and be assigned a priority of “2”. Region 6 may include
a MiniMDKernel and be assigned an even higher priority of
“4”. The other regions may be assigned a default priority, a
priority of “0”, or remain unassigned. Hardware may treat
unassigned regions as having a priority of “0”. Any numbers,
positive, negative, or 0, may be used in specifying dataset
priorities.

In another example, the same or a different application may
allocate an address space 2004 including three regions.
Region 8 may include a dictionary or other software reference
and be assigned a priority of “4”. Region 10 may include a
root index and be assigned a priority of “3”. Region 9 may be
assigned a default priority. In one embodiment, software may
allocate physically contiguous pages for elevated priority
regions and pin such pages. Pinning the pages may be per-
formed by, for example, using functions such as “mlock.”
Furthermore, the operating system may provide a system call
by which application software communicates its dataset pri-
orities to the operating system.

The setting of priorities for memory regions in address
spaces 2002, 2004 may be performed by any suitable mecha-
nism. For example, an instruction for setting cache priority
may be defined and available to software. Such an instruction
may include a parameter for specifying the process identifier
associated with the address space, a start address, an end
address, and a priority. For example, region 3 may be set by
identifying address space 2002, a start address of 0xC000, an
end address of 0xE000, and a priority of “2”.

In one embodiment, operating system 1808 or another
suitable portion of system 1800 may translate the specified
virtual memory ranges into physical memory ranges in a
lookup table 2008. In another embodiment, operating system
1808 or another suitable portion of system 1800 may populate
abloom filter table 2006 or other suitable entity. These may be
used to populate a suitable entity, such as bloom filter 1842,
for priority address lookup by hardware.

Operating system 1808 may maintain lookup table 2008
has a private data structure for all of the elevated priority
physical ranges. Any suitable number of elevated priority
ranges may be used. If the priority scheme used by software
differs in scale than the priority scheme used by hardware, the
priority scheme used by software may be normalized so that
the priority values may be correctly read by hardware. Oper-
ating system 1808 may maintain k entries in bloom filter table
2006, wherein k is the number of priority levels supported by
hardware. Each entry of bloom filter table 2006 may include
a bloom filter pattern indexed by the associated priority.

Using the elements of bloom filter table 2006 as pro-
grammed into bloom filter 1842, cache controller 1844 may
determine the priority of any given physical address. In one
embodiment, priorities may be maintained and looked-up
directly in terms of virtual addresses, for example, if caches
are accessed by virtual addresses in those embodiments. In
another embodiment, cache controller 1844 may perform the
look-up in a single clock cycle. The lookup may be specified
as yielding a priority @ of an address ¢:
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max(j|¢ € P))
)= |
0:if ¢ jloeP;

wherein P, is the set of physical addresses mapped to priority
i. Thus, the priority returned is the maximum priority level j
for which the address ¢ may be found within any Pj. Other-
wise, the priority returned is zero. If bloom filter 1842 is used
to provide lookup, a statistical error may exist. However, such
an error may be kept sufficiently small by choosing a suffi-
ciently large size or width for bloom filter 1842 to avoid error.

Assignment of bloom filter table 2006 to bloom filter 1842
may be performed in any suitable manner. For example, pat-
terns or masks as specified in bloom filter table 1842 may be
sent to cache controller 1844. Furthermore, during runtime
the bloom filters may be reassigned as software adjusts pri-
orities. Bloom filters may be loaded at a context switch or may
be kept across multiple threads. Such selection may be
adjusted dynamically.

FIG. 21 illustrates example operation of system 1800 to
perform and adapt cache eviction, according to embodiments
of'the present disclosure. In one embodiment, a method 2100
may be applied by cache controller 1844 to perform and adapt
cache eviction. Thus, method 2100 illustrates example opera-
tion of cache controller 1844 or any other suitable part of
system 1800. Method 2100 may begin at any suitable point
and may execute in any suitable order. In one embodiment,
method 2100 may begin at 2105.

In one embodiment, cache controller 1844 may utilize
priority specified by software in view of a cache victim selec-
tion algorithm. Such a cache victim selection algorithm may
include any suitable such algorithm, including those dis-
cussed above. In another embodiment, if the priority specified
by software conflicts with the results of selecting a cache
victim (by, for example, selecting a cache victim with a high
priority), then cache controller 1844 may repeat the process
of selecting a cache victim in an attempt to find a lower-
priority cache victim. In yet another embodiment, cache con-
troller 1844 may limit the number of attempts that are per-
formed to find such a lower-priority cache victim and adapt
the selection process. In a further embodiment, cache con-
troller 1844 may limit such a number of attempts proportion-
ally to the priority of selected cache victims.

At 2105, a miss in a cache or other container may be
detected. The miss may be for a cacheline or other data with
an address N. At 2110, cache controller 1844 may determine
a candidate cache victim within the cache located at address
V through any suitable cache victim identification algorithm.
The candidate cache victim located at address V may have
been, for example, the oldest or last-accessed element within
the cache.

At 2115, cache controller 1844 may determine the priority
levels specified for both the requested data at address N and
the candidate cache victim at address V. In one embodiment,
if the candidate cache victim at address V has an equal or
lower priority than the priority of the requested data at address
N, then the candidate may be evicted at 2150. Otherwise,
cache controller 1844 may proceed to 2120 to search for a
lower priority candidate to evict.

For example, the requested data at address N may have a
priority of “3” and the eviction candidate at address V may
have a priority of “1.” In such a case, the eviction candidate
may be displaced by the requested data in the cache. In
another example, the requested data at address N may have a
priority of “1” and the eviction candidate at address V may
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have a priority of “3.” In such a case, cache controller may
proceed to determine whether to search for a lower priority
candidate to evict.

At 2120, a maximum number of iterations or another
threshold for searching for a lower priority candidate may be
established. In one embodiment, the maximum may be set as
the previously determined priority level of the requested data
at address N. For example, if the requested data at address N
has a priority of “3”, then the threshold may be set to three.
Moreover, a counter for the number of attempts that cache
controller 1844 has made to determine another cache victim
of lower priority may be initialized.

At 2125, cache controller 1844 may identify a new cache
victim according to the cache victim identification algorithm.
The new cache victim may include an entry in the cache at an
address designated as W. The counter for the number of
attempts that cache controller 1844 has made to determine
another cache victim may be incremented.

At 2130, cache controller 1844 may access bloom filter
1842 to determine priority for the address designated as W. In
one embodiment, cache controller 1844 may also determine
priority for the address designated as N and V if such desig-
nations have changed. Cache controller 1844 may determine
whether the priority of the address designated as W is less
than the priority of the previously determined address V.
Thus, cache controller 1844 may determine whether the new
victim has a lower priority than the previously determined
victim. If W does have a lower priority than V, then cache
controller 1844 may proceed to 2135 to continue to evaluate
W. Otherwise, cache controller 1844 may proceed to 2145 in
anticipation of possibly searching for another cache victim.
By proceeding with the lowest priority candidate, cache con-
troller 1844 may evict a lowest-priority-available candidate if
a fully suitable candidate is not identified.

At 2135, V may be redesignated and assigned to the newer
candidate cache victim at address W. Cache controller 1844
may repeat the above-described evaluation of V at 2140,
wherein cache controller 1844 may determine whether the
priority of the candidate cache victim at address V (formerly
designated at address W) is less than or equal to the priority of
the requested cacheline at address N. If so, cache controller
1844 may proceed to 2150 to evict the data at V for the data at
N. Otherwise, cache controller 1844 may proceed to 2145 to
determine whether to continue searching for a cacheline with
lower priority.

At 2145, cache controller 1844 may determine whether the
count of the number of times that cache controller 1844 has
searched for a suitable lower priority cache victim to make
room for the identified cacheline at address N has exceeded a
threshold. In one embodiment, the threshold may include the
threshold specified by the priority of the cacheline at address
N, though any suitable threshold may be used. In other
embodiments, the threshold may be flexible or adaptable
depending upon an average of the number of times lower
priority victims are found or not found during previous execu-
tion for other cache misses.

In one embodiment, ifthe threshold has not been exceeded,
then cache controller 1844 may find another cache victim to
evaluate and return to 2125. If the threshold has been
exceeded, cache controller 1844 may proceed to 2150 and
evict the current candidate cache victim (at address V) for the
requested cacheline (at address N), even though the current
candidate cache victim has a higher priority than the
requested cacheline.

Cache controller 1844 may evaluate the number of times it
has searched for a replacement cache victim because it is
possible that all candidate cache victims might have higher
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priority than the requested cacheline. If cache controller 1844
repeats such a search too many times, the performance gains
of keeping higher priority data within the cache may be lost.

For example, consider the priority of the requested cach-
eline N to be “2” and the priority of the first selected cache
victim V to be “4.” If at 2130 the priority of the new candidate
W is “4” and the priority of the previous candidate V is “3”,
then cache controller 1844 may maintain candidate V for
subsequent evaluation. If at 2130 the priority of the new
candidate W and the priority of the previous candidate V are
the same, then cache controller 1844 may maintain candidate
V for subsequent evaluation. If at 2130 the priority of the new
candidate W is “3” and the priority of the previous candidate
V is “4”, then cache controller 1844 may make W the candi-
date V for subsequent evaluation. In such a case, at 2140, the
priority of V is now “3” which is still greater than the priority
of'the requested cacheline (“2”), and so cache controller 1844
may continue searching for cache victims, depending upon
the analysis in 2145. If instead the priority of the requested
cacheline N was “3”, then the priority of the requested cach-
eline N would be greater than or equal to the priority of the
candidate cache victim V, and thus cache controller 1844
would evict the candidate cache victim V at 2150.

In another example, if the priority of the requested cach-
eline N was “2”, for each evaluated cache victim V with a
priority greater than “2”, the counter k may be incremented. A
maximum value of k may be set to “2” corresponding to the
priority of the requested cacheline N. Thus, in this example,
cache controller 1844 might only make three attempts to find
a cache victim with a lower priority than the requested cach-
eline N. Accordingly, cache controller 1844 may limit the
work performed to find a suitable cache victim in proportion
to the priority of the requested cacheline. Furthermore, in this
example, if the first three cache victims had a priority greater
than “2”, cache controller 1844 would determine at 2145 that
k had exceeded the maximum threshold of two attempts to
find a suitable cache victim, and would nonetheless replace
the presently considered cache victim V with the requested
cacheline N. In another example, if the priority of the
requested cacheline N were “17, then cache controller 1844
might only spend a maximum of two iterations searching for
a suitable cache victim with a lower priority than the
requested cacheline N.

Depending upon the loads being executed and the imple-
mentation of system 1800, cache misses might constitute only
a small percent of attempted accesses of memory. Further-
more, a candidate cache victim selected by cache controller
1844 might, more often than not, have a lower priority than
the requested cacheline if high-priority designations are used
judiciously. Furthermore, the more times that cache control-
ler 1844 looks for additional candidate cache victim, the more
likely that a suitable candidate will be found. The likelihood
of finding a suitable candidate may be expected to increase
exponentially with the number of times that cache controller
1844 searches for a replacement candidate. However, if pri-
oritization as specified by software is incorrect, a poor fit for
the loads executing on system 1800, or if software access
patterns have misaligned with the prioritization, then cache
controller 1844 may dynamically adjust its search mecha-
nisms for suitable cache victims. Such dynamic adjustment
may be made for repeated situations in which cache controller
1844 evicts a higher priority cache victim because cache
controller 1844 cannot find a cache victim with a lower pri-
ority than the requested cacheline.

FIG. 22 illustrates further example operation of system
1800 to perform and adapt cache eviction, according to
embodiments of the present disclosure. System 1800 may
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dynamically adjust the search mechanisms used to find suit-
able cache victims by evaluating searching metrics across
multiple searches for replacement cache victims. In one
embodiment, a method 2100 may be applied by cache con-
troller 1844 to perform and adapt cache eviction. Thus,
method 2200 illustrates example operation of cache control-
ler 1844 or any other suitable part of system 1800. Method
2200 may begin at any suitable point and may execute in any
suitable order. In one embodiment, method 2200 may begin at
2205.

The operation of cache controller 1844 in FIG. 22 may
augment the operation illustrated in FIG. 21. However, as
cache controller 1844 selects a cache victim that is from a
high priority dataset, a divergence between specified priority
and actual use has occurred. In order to determine whether
multiple instances of such divergence are occurring, reflect-
ing a larger problem requiring adaptation, in one embodiment
cache controller 1844 may evaluate average of the difference
between the number of times a lower priority cacheline has
evicted a higher priority entry in the cache and the number of
times a lower priority entry in the cache has been evicted for
a higher priority cacheline. In another embodiment, cache
controller 1844 may also consider a running average of the
number of times the cache is searched for a lower priority
entry. If cache controller 1844 determines a mismatch in the
assigned priority and the execution of cache eviction, cache
controller 1844 may adjust its search process and notify soft-
ware.

At 2205, a miss in a cache or other container may be
detected. The miss may be for a cacheline or other data with
an address N. At 2210, cache controller 1844 may determine
a candidate cache victim within the cache located at address
V through any suitable cache victim identification algorithm.
The candidate cache victim located at address V may have
been, for example, the oldest or last-accessed element within
the cache. Cache controller 1844 may initialize a counter for
the number of attempts, if any, that cache controller 1844 has
made to determine another cache victim of lower priority.

At 2215, cache controller 1844 may determine the priority
levels specified for the requested data at address N and the
candidate cache victim at address V. In one embodiment,
cache controller 1844 may determine whether the candidate
cache victim at address V has an equal or lower priority than
the priority of the requested data at address N. In another
embodiment, the priority of the requested data at address N
may be adjusted before it is used. Any suitable mechanism or
criteria may be used to adjust the priority of the requested data
ataddress N. In one embodiment, the adjustment may only be
made upon a determination that execution in system 1800 has
deviated from the patterns indicated in dataset priorities set by
software. Otherwise, the unadjusted priority of the requested
data at address N may be used. If the candidate cache victim
atV has alower or equal priority as the adjusted priority of the
requested cacheline N, then cache controller 1844 may evict
the data at V and replace it with the requested cacheline N at
2270. Otherwise, cache controller 1844 may evaluate pos-
sible other candidate cache victims beginning at 2220.

In one embodiment, the adjustment to priority may be
derived from the normal priority and an average number of
times that cache controller 1844 has searched for additional
candidate cache victims. Such a search may arise when a
candidate cache victim has a higher priority than the
requested cacheline N, as described above. As this average
number rises, the adjusted priority of the requested cacheline
may rise in comparison to the real priority. Thus, cache con-
troller makes it more likely for a candidate victim to have a
lower priority than the requested cacheline. As a conse-
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quence, it is more likely that the candidate cache victim will
be evicted and searching for additional candidate cache vic-
tims will be lessened.

Any suitable adjustment may be made to priority based
upon the average number of times that cache controller 1844
has searched for additional candidate cache victims (refer-
enced as “average-k”). In one embodiment, when average-k
rises above a threshold, defined in absolute or relative terms,
the priority may be increased a defined or percentage amount.
As average-k rises above another, higher threshold, the pri-
ority may again be increased. In another embodiment, aver-
age-k may be normalized and applied as a factor to priority.
The resultant priority may be rounded down or up as appro-
priate. Specific threshold amounts and corresponding priority
increases may be determined through experimentation on
system 1800. As average-k decreases below the same thresh-
olds, the priority may be similarly lowered.

For example, if average-k goes above “2”, the priority may
be adjusted by adding “1” to the priority of the requested
cacheline N. Thus, if the requested cacheline N normally has
a priority of “2”, the adjusted priority may be “3”. The
adjusted priority is compared to the priority of the candidate
cache victim as shown in 2215. The increased priority of the
requested cacheline N makes it more likely that the cacheline
N will have greater priority than the candidate cache victim,
wherein cache controller 1844 may evict the candidate at
2270. If average-k goes above “3”, the priority may be
adjusted by adding an additional “1” to the priority of the
requested cacheline N. Thus, if the requested cacheline N
normally has a priority of “2”, the adjusted priority may be
“4”. The increased priority of the requested cacheline N
makes it even more likely that the cacheline N will have
greater priority than the candidate cache victim, wherein
cache controller 1844 may evict the candidate at 2270.

At2220, amaximum number of times that cache controller
1844 may search for replacement cache victims may be deter-
mined. In one embodiment, such a maximum may be set to
the priority of the requested cacheline N, as performed in FI1G.
21. In another embodiment, such a threshold may be adjusted
downward when the cache includes so many high priority
cache victim candidates that the search for suitable cache
victims is impeded. Such a condition may be measured in any
suitable manner, such as by average-k. In another embodi-
ment, performing adjustment on such a maximum may be the
inverse of the adjustment performed at 2215. Accordingly,
when average-k rises, cache controller 1844 might not spend
as many iterations searching for cache victim candidates. The
adjustment to the maximum may be reversed, and the maxi-
mum raised as average-k reduces to a previous level. Under
normal operation, the unadjusted priority of the requested
cacheline, and thus an unadjusted maximum number of
searches, may be used at 2220.

Moreover, adjustments to the maximum in 2220 and to the
priority of the requested cacheline N in 2215 may be made
upon indications received by cache controller 1844 that
searches for additional cache victims will not be fruitful. Such
situations may include instructions from software that throttle
the replacement searches, determinations that a cache is
thrashing, determinations that software is going through gar-
bage collection, or any other suitable condition.

At 2225, cache controller 1844 may identify a new cache
victim according to the cache victim identification algorithm.
The new cache victim may include an entry in the cache at an
address designated as W. The counter for the number of
attempts that cache controller 1844 has made to determine
another cache victim may be incremented.
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At 2230, cache controller 1844 may access bloom filter
1842 to determine priority for the address designated as W.
Cache controller 1844 may determine whether the priority of
the address designated as W is less than the priority of the
previously determined address V. If W does have a lower
priority than V, then cache controller 1844 may proceed to
2135 to continue to evaluate W. Otherwise, cache controller
1844 may proceed to 2245 in anticipation of possibly search-
ing for another cache victim. By proceeding with the lowest
priority candidate, cache controller 1844 may evict a lowest-
priority-available candidate if a fully suitable candidate is not
identified.

At 2235,V may be redesignated as representing the newer
cache victim W. At 2240, cache controller 1844 may deter-
mine whether the priority of the candidate cache victim at
address V is less than or equal to the priority of the requested
cacheline at address N. In one embodiment, the adjusted
priority of N may be used. If so, cache controller 1844 may
proceed to 2270 to evict the data at V for the data at N.
Otherwise, cache controller 1844 may proceed to 2245 to
determine whether to continue searching for a cacheline with
lower priority.

In one embodiment, if the new candidate cache victim V
has a lower or equal priority than the requested cacheline N,
at 2250 cache controller 1844 may determine that a low
priority line is to be displaced. This may represent a success-
ful identification and eviction of a lower priority cache victim
as foreseen by the designation of priority datasets. Such an
action may be tracked as “low-count™ across multiple misses
and execution of 2200. Low-count may be incremented at
2250. If such success become greatly outweighed, on aver-
age, by unsuccessful identifications of lower priority cache
victims (resulting in eviction of higher priority cache vic-
tims), then cache controller 1844 may perform dynamic
adjustments or notification of software.

At 2245, cache controller 1844 may determine whether the
count of the number of times that cache controller 1844 has
searched for a suitable lower priority cache victim to make
room for the identified cacheline at address N has exceeded a
threshold. In one embodiment, the threshold may include the
threshold specified by the inversely-adjusted priority of the
cacheline at address N, though any suitable threshold may be
used. If the threshold has been reached, then cache controller
1844 may evict cache victim V at 2270, even though V has a
higher priority than the requested cacheline N. If the thresh-
old has not been reached, cache controller may return to 2225
to select an additional cache victim.

In one embodiment, if the threshold of iterations to find a
suitable cache victim has been reached, at 2255 cache con-
troller 1844 may determine that a high priority line is to be
displaced. This may represent an unsuccessful identification
and eviction of a lower priority cache victim (wherein a
higher priority cache victim was evicted instead), in contrast
to the designation of priority datasets. Such an action may be
tracked as “high-count™ across multiple misses and execution
of method 2200. High-count may be incremented at 2255. If
such failures greatly outweigh, on average, the successful
identifications of lower priority cache victims, then cache
controller 1844 may perform dynamic adjustments or notifi-
cation of software.

At 2260, average-k may be updated with the number of
times that cache controller searched for additional cache vic-
tims during the instant execution of method 2200. Thus, aver-
age-k may reflect arate of attempted evictions of high priority
lines from the cache. At 2265, it may be determined whether
aratio of or difference between evictions ofhigh cache entries
(resulting from 2255) and evictions of low cache entries (re-
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sulting from 2250) has reached a threshold. The threshold
may be, for example, aratio of 2:1 of evictions of high priority
candidates to lower priority candidates. Upon reaching the
threshold, cache controller 1844 may make adjustments at
2215 and 2220 to adapt cache eviction, notify software, pause
prefetching, or take any other suitable corrective action.

In one embodiment, cache controller 1844 may pause con-
sideration of priority datasets in cache eviction until the ratio
or difference between low-count and high-count returns to
normal, or at least below the threshold. In such a situation,
cache controller 1844 may perform cache victim selection
using the algorithm of, for example, 2210, and then evict the
cache victim at 2270 while omitting one or more of the steps
0f 2215-2245. For each such eviction, cache controller 1844
may increment low-count, update average-k, and reanalyze
the ratio or difference between low-count and high-count.

In another embodiment, cache controller 1844 may iden-
tify candidates for cache eviction that included a high priority
(designated by the priority datasets) to software. The
addresses of such candidates may be logged to, for example,
a circular buffer, which can be accessed by operating system
1808 or application 1810 for retrieval. Such software may
make adjustments to the priority datasets based upon such
identification of badly prioritized memory addresses.

Cache controller 1844 may perform 2250, 2255, 2260, and
2265 in parallel with 2270. At 2275, cache controller 1844
may determine whether to continue monitoring for cache
misses at 2205 or to terminate.

In one embodiment, cache controller 1844 may reclaim
more than one cacheline. Cache controller 1844 may reclaim
more than one cacheline with a lower priority than the
requested cacheline N.

FIG. 23 is an illustration of operation of software to per-
form corrective action when notified by hardware that too
many high-priority addresses have been evicted from cache,
according to embodiments of the present disclosure. Such
software performing the operation in FIG. 23 may include, for
example, operating system 1808, application 1810, a soft-
ware performance and quality-of-service utility, or DBT
1816. The operations performed may include a method 2300.
Thus, method 2300 illustrates example operation of software
entities or any other suitable part of system 1800. Method
2300 may begin at any suitable point and may execute in any
suitable order. In one embodiment, method 2300 may begin at
2305.

At 2305, in one embodiment, software may receive infor-
mation that priority has been adapted by hardware as
described in 2265 of F1G. 23. In other embodiments, software
may determine that action is required based upon executed
instructions, a context switch, garbage collection, a phase
change, or any other suitable criterion. Software may take any
of'the corrective action described below alone or together, in
series or in parallel.

At 2310, software may add instructions to inform hardware
to pause priority evaluation. In response to such instructions,
hardware may perform normal cache victim selection without
regard to dataset priorities. The consideration of cache evic-
tion in view of dataset priorities may be resumed upon follow-
up instructions by software, a specific time, or other suitable
criteria.

At 2315, software may instruct hardware to resume con-
sideration of dataset priorities after a phase transition, such as
a context switch, garbage collection, or other event has com-
pleted. In such a case, hardware may have previously stopped
considering dataset priorities, whether because of received
software instructions or because of its own analysis.
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At 2320, software may instruct operating system 1808 to
restore values of a previously used bloom filter. Such a bloom
filter may have been used in conjunction with a previous
thread, and such a restoration may be made upon a context
switch wherein the thread will be executed again.

At 2325, software may adjust dataset priorities. In one
embodiment, software may adjust dataset priorities by prun-
ing priority designations corresponding to addresses identi-
fied as high-priority candidate cache victims by hardware.
Such cache victims may meet the criteria of eviction other-
wise applied by hardware, but are high-priority. Software
may redesignate such addresses as lower priority or as having
no priority. The address ranges may be removed and added
again at a later time, according to processor utilization of the
addresses.

FIG. 24 is a flowchart of an example embodiment of a
method 2400 for executing adaptive dataset priorities, in
accordance with embodiments of the present disclosure.
Method 2400 may illustrate operations performed by, for
example, processor 1804, applications 1810, operating sys-
tem 1808, DBT 1816, or cache controllers 1844. Portions of
method 2400 may be performed by portions of methods 2100,
2200, or 2300. Method 2400 may begin at any suitable point
and may execute in any suitable order. In one embodiment,
method 2400 may begin at 2405.

At 2405, priority ranges for cache persistence may be
determined for ranges of virtual memory. At 2410, the priority
ranges may be translated to physical memory. Furthermore, a
mapping of the priority values may be mapped to the ranges
in a bloom filter.

At 2415, access of an unavailable cache line may be
detected. In response to such a cache miss, a potential line to
evict may be determined based upon a cache victim algo-
rithm. At 2420, it may be determined whether the line to be
evicted is a high priority line. If not, at 2425 the line may be
evicted.

If the line is a high priority line, at 2430 the priority of the
cache victim line may be adapted or adjusted, if necessary. At
2435, it may be determined whether a suitable cache victim
has been identified. Such a suitable cache victim may have a
priority (possibly adjusted) low enough to be evicted in view
of the requested cacheline. Furthermore, if no suitable cache
victim has been identified, it may be determined whether the
cache victim line will nonetheless be evicted do to operational
boundaries. If not, method 2400 may return to 2430. If so,
method 2400 may proceed to 2440, wherein the cache victim
line will be evicted.

At 2445, if necessary, software may be informed of the
operational status of cache evictions. At 2450, if necessary,
software may adjust priority or take other corrective action.
At 2455, it may be determined whether to repeat method
2400. If so, method 2400 may return to, for example, 2415. If
not, method 2400 may terminate.

Methods 2100, 2200, 2300, and 2400 may be initiated by
any suitable criteria. Furthermore, although methods 2100,
2200, 2300, and 2400 describe operation of particular ele-
ments, methods 2100, 2200, 2300, and 2400 may be per-
formed by any suitable combination or type of elements. For
example, methods 2100, 2200, 2300, and 2400 may be imple-
mented by the elements illustrated in FIGS. 1-20 or any other
system operable to implement methods 2100, 2200, 2300,
and 2400. As such, the preferred initialization point for meth-
0ds 2100, 2200, 2300, and 2400 and the order of the elements
comprising methods 2100, 2200, 2300, and 2400 may depend
on the implementation chosen. In some embodiments, some
elements may be optionally omitted, reorganized, repeated,
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or combined. Moreover, elements of methods 2100, 2200,
2300, and 2400 may be interchanged or implemented by one
another.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
disclosure may be implemented as computer programs or
program code executing on programmable systems compris-
ing at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code may be applied to input instructions to per-
form the functions described herein and generate output
information. The output information may be applied to one or
more output devices, in known fashion. For purposes of this
application, a processing system may include any system that
has a processor, such as, for example; a digital signal proces-
sor (DSP), a microcontroller, an application specific inte-
grated circuit (ASIC), or a microprocessor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine-readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

Accordingly, embodiments of the disclosure may also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines struc-
tures, circuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
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ora combination thereof. The instruction converter may be on
processor, off processor, or part-on and part-off processor.

Thus, techniques for performing one or more instructions
according to at least one embodiment are disclosed. While
certain exemplary embodiments have been described and
shown in the accompanying drawings, it is to be understood
that such embodiments are merely illustrative of and not
restrictive on other embodiments, and that such embodiments
not be limited to the specific constructions and arrangements
shown and described, since various other modifications may
occur to those ordinarily skilled in the art upon studying this
disclosure. In an area of technology such as this, where
growth is fast and further advancements are not easily fore-
seen, the disclosed embodiments may be readily modifiable
in arrangement and detail as facilitated by enabling techno-
logical advancements without departing from the principles
of the present disclosure or the scope of the accompanying
claims.

What is claimed is:

1. A processor, comprising:

a front end including circuitry to receive an instruction

defining a priority dataset, the priority dataset including
a plurality of ranges of memory addresses, each range
corresponding to a respective priority level;

a cache; and

a cache controller, including circuitry to:

detect a miss in the cache for a requested cache value;

determine a candidate cache victim from the cache;

determine a priority of the requested cache value accord-
ing to the priority dataset;

determine a priority of the candidate cache victim
according to the priority dataset;

evict the candidate cache victim based on whether the
priority of the candidate cache victim is less than or
equal to the priority of the requested cache value;

maintain a first count of previous evicted cache victims
with higher priority than respective previous
requested cache values;

maintain a second count of previous evicted cache vic-
tims with lower or equal priority than respective pre-
vious requested cache values; and

adjust eviction policies based upon the first count and the
second count.

2. The processor of claim 1, wherein the cache controller
further includes circuitry to evict the candidate cache victim
further based on an instruction to adjust evaluation of the
priority dataset.

3. The processor of claim 1, wherein the cache controller
further includes circuitry to, upon a determination that the
priority of the candidate cache victim is higher than the pri-
ority of the requested cache value, search for a new candidate
cache victim to compare with the requested cache value.

4. The processor of claim 1, wherein the cache controller
further includes circuitry to:

upon a determination that the priority of the candidate

cache victim is higher than the priority of the requested
cache value, search for a new candidate cache victim
with a lower or equal priority to the requested cache
value; and

bound the search for the new candidate cache victim with a

threshold, the threshold determined from the priority of
the requested cache value.

5. A method comprising, within a processor:

receiving an instruction defining a priority dataset, the

priority dataset including a plurality of ranges of
memory addresses, each range corresponding to a
respective priority level;
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detecting a miss in a cache for a requested cache value;

determining a candidate cache victim from the cache;

determining a priority of the requested cache value accord-
ing to the priority dataset;

determining a priority of the candidate cache victim

according to the priority dataset;

determining whether to evict the candidate cache victim

based on whether the priority of the candidate cache
victim is less than or equal to the priority of the requested
cache value;

maintaining a first count of previous evicted cache victims

with higher priority than respective previous requested
cache values;

maintaining a second count of previous evicted cache vic-

tims with lower or equal priority than respective previ-
ous requested cache values; and

adjusting eviction policies based upon the first count and

the second count.

6. The method of claim 5, further comprising evicting the
candidate cache victim further based on an instruction to
adjust evaluation of the priority dataset.

7. The method of claim 5, further comprising, upon a
determination that the priority of the candidate cache victim
is higher than the priority of the requested cache value, search
for a new candidate cache victim to compare with the
requested cache value.

8. The method of claim 5, further comprising:

upon a determination that the priority of the candidate

cache victim is higher than the priority of the requested
cache value, searching for a new candidate cache victim
with a lower or equal priority to the requested cache
value; and

bonding the search for the new candidate cache victim with

a threshold, the Threshold determined from the priority
of the requested cache value.

9. A system for executing instructions, including:

a front end including circuitry to receive an instruction

defining a priority dataset, the priority dataset including
a plurality of ranges of memory addresses, each range
corresponding to a respective priority level;

a cache; and

a cache controller, including circuitry to:

detect a miss in the cache for a requested cache value;

determine a candidate cache victim from the cache;

determine a priority of the requested cache value accord-
ing to the priority dataset;

determine a priority of the candidate cache victim
according to the priority dataset;

evict the candidate cache victim based on whether the
priority of the candidate cache victim is less than or
equal to the priority of the requested cache value;

maintain a first count of previous evicted cache victims
with higher priority than respective previous
requested cache values;

maintain a second count of previous evicted cache vic-
tims with lower or equal priority than respective pre-
vious requested cache values; and

adjust eviction policies based upon the first count and the
second count.

10. The system of claim 9, wherein the cache controller
further includes circuitry to evict the candidate cache victim
further based on an instruction to adjust evaluation of the
priority dataset.

11. The system of claim 9, wherein the cache controller
further includes circuitry to, upon a determination that the
priority of the candidate cache victim is higher than the pri-
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ority of the requested cache value, search for a new candidate
cache victim to compare with the requested cache value.
12. The system of claim 9, wherein the cache controller
further includes circuitry to:
upon a determination that the priority of the candidate 5
cache victim is higher than the priority of the requested
cache value, search for a new candidate cache victim
with a lower or equal priority to the requested cache
value; and
bound the search for the new candidate cache victim witha 10
threshold, the threshold determined from the priority of
the requested cache value.
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